Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://plantcyc.org/content/plantcyc-15.2.0
Multi species reference database. Comprehensive plant biochemical pathway database, containing curated information from literature and computational analyses about genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism.
Proper citation: PlantCyc (RRID:SCR_002110) Copy
http://cbl-gorilla.cs.technion.ac.il/
A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.
Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy
http://arabidopsis.med.ohio-state.edu
An information resource of Arabidopsis promoter sequences, transcription factors and their target genes that contains three databases. *AtcisDB consists of approximately 33,000 upstream regions of annotated Arabidopsis genes (TAIR9 release) with a description of experimentally validated and predicted cis-regulatory elements. *AtTFDB contains information on approximately 1,770 transcription factors (TFs). These TFs are grouped into 50 families, based on the presence of conserved domains. *AtRegNet contains 11,355 direct interactions between TFs and target genes. They provide free download of Arabidopsis thaliana cis-regulatory database (AtcisDB) and transcription factor database (AtTFDB).
Proper citation: Arabidopsis Gene Regulatory Information Server (RRID:SCR_006928) Copy
Genome wide map of putative transcription factor binding sites in Arabidopsis thaliana genome.Data in AthaMap is based on published transcription factor (TF) binding specificities available as alignment matrices or experimentally determined single binding sites.Integrated transcriptional and post transcriptional data.Provides web tools for analysis and identification of co-regulated genes. Provides web tools for database assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.
Proper citation: AthaMap (RRID:SCR_006717) Copy
http://gpcr.biocomp.unibo.it/esldb
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 22,2022. database of protein subcellular localization annotation for eukaryotic organisms. It contains experimental annotations derived from primary protein databases, homology based annotations and computational predictions.
Proper citation: eSLDB - eukaryotic Subcellular Localization database (RRID:SCR_000052) Copy
http://cgi-www.daimi.au.dk/cgi-chili/datfap/frontdoor.py
A database of transcription factors from 13 plant species, and PCR primers for around 90% of them.
Proper citation: DATFAP (RRID:SCR_005413) Copy
http://genetrail.bioinf.uni-sb.de/
A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GeneTrail (RRID:SCR_006250) Copy
DNAtraffic database is dedicated to be an unique comprehensive and richly annotated database of genome dynamics during the cell life. DNAtraffic contains extensive data on the nomenclature, ontology, structure and function of proteins related to control of the DNA integrity mechanisms such as chromatin remodeling, DNA repair and damage response pathways from eight model organisms commonly used in the DNA-related study: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on diseases related to the assembled human proteins. Database is richly annotated in the systemic information on the nomenclature, chemistry and structure of the DNA damage and drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA metabolism pathway analysis. Database includes illustrations of pathway, damage, protein and drug. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines it has to be extensively linked to numerous external data sources. Database represents the result of the manual annotation work aimed at making the DNAtraffic database much more useful for a wide range of systems biology applications. DNAtraffic database is freely available and can be queried by the name of DNA network process, DNA damage, protein, disease, and drug.
Proper citation: DNAtraffic (RRID:SCR_008886) Copy
http://zope.bioinfo.cnio.es/plan2l/plan2l.html
A web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. The system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned.
Proper citation: PLAN2L (RRID:SCR_013346) Copy
http://rarge.psc.riken.jp/rartf/
Database of complete sets of Arabidopsis transcription factors with a variety of information on Arabidopsis thaliana transcription factor families including: full-length cDNA sequences, Ds-tagged mutants, multiple sequences alignments of family members, phylogenic trees, functional motifs, and so on. In addition, expression profiles of all transcription factor genes are available.
Proper citation: RARTF (RRID:SCR_013457) Copy
mirEX is a comprehensive platform for comparative analysis of primary microRNA expression data. quantitative real-time PCR-based gene expression profiles are stored in a universal and expandable database scheme and wrapped by an intuitive user-friendly interface. A new way of accessing gene expression data in mirEX includes a simple mouse operated querying system and dynamic graphs for data mining analyses. In contrast to other publicly available databases, the mirEX interface allows a simultaneous comparison of expression levels between various microRNA genes in diverse organs and developmental stages. Currently, mirEX integrates information about the expression profile of 190 Arabidopsis thaliana pri-miRNAs in seven different developmental stages: seeds, seedlings and various organs of mature plants. Additionally, by providing RNA structural models, publicly available deep sequencing results, experimental procedure details and careful selection of auxiliary data in the form of web links, mirEX can function as a one-stop solution for Arabidopsis microRNA information. This database aims to be useful to anyone investigating the role of microRNAs in shaping plant development, organ formation and response to different biotic and abiotic stresses. To start exploring the database just press the "Browse Atlas" button or search for a particular microRNA record by typing at least two numbers from its ID in the window.
Proper citation: mirEX (RRID:SCR_006060) Copy
http://hannonlab.cshl.edu/index.html
The Hannon laboratory comprises a broad spectrum of programs in small RNA biology, mammalian genetics and genomics. We study RNAi and related pathways in a wide variety of organisms to extract common themes that define both the mechanisms by which small RNAs act and the biological processes which they impact. Currently, we focus on microRNAs, endogenous siRNAs and piRNAs and their roles in gene regulation, cancer biology, stem cell biology and in defense of the genome against transposons. In collaboration with Steve Elledge (Harvard) and Scott Lowe (CSHL), we develop genome-wide shRNA tools for RNAi-based genetics in mammalian cells, and we are now producing similar collections of artificial microRNAs for Arabidopsis with Detlef Weigel (MPI), Dick McCombie (CSHL) and Rob Martienssen (CSHL) as part of the 2010 project (see 2010.cshl.edu). Our genomic efforts include the application of RNAi-based genetic screens to cancer biology and stem cells. We also make heavy use of next generation sequencing methodologies for probing small RNA populations, in part as a member of the ENCODE consortium (with Tom Gingeras, CSHL). Finally, we develop (with Dick McCombie) and apply focal re-sequencing methods for identifying disease relevant mutations, for probing the epigenetic landscape and for the study of human evolution.
Proper citation: CSHL - Hannon Lab (RRID:SCR_005982) Copy
Exploratory Gene Association Networks (EGAN) is a software tool that allows a bench biologist to visualize and interpret the results of high-throughput exploratory assays in an interactive hypergraph of genes, relationships (protein-protein interactions, literature co-occurrence, etc.) and meta-data (annotation, signaling pathways, etc.). EGAN provides comprehensive, automated calculation of meta-data coincidence (over-representation, enrichment) for user- and assay-defined gene lists, and provides direct links to web resources and literature (NCBI Entrez Gene, PubMed, KEGG, Gene Ontology, iHOP, Google, etc.). EGAN functions as a module for exploratory investigation of analysis results from multiple high-throughput assay technologies, including but not limited to: * Transcriptomics via expression microarrays or RNA-Seq * Genomics via SNP GWAS or array CGH * Proteomics via MS/MS peptide identifications * Epigenomics via DNA methylation, ChIP-on-Chip or ChIP-Seq * In-silico analysis of sequences or literature EGAN has been built using Cytoscape libraries for graph visualization and layout, and is comparable to DAVID, GSEA, Ingenuity IPA and Ariadne Pathway Studio. There are pre-collated EGAN networks available for human (Homo sapiens), mouse (Mus musculus), rat (Rattus norvegicus), chicken (Gallus gallus), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), nematode (Caenorhabditis elegans), mouse-ear cress (Arabidopsis thaliana), rice (Oryza sativa) and brewer's yeast (Saccharomyces cerevisiae). There is now an EGAN module available for GenePattern (human-only). Platform: Windows compatible, Mac OS X compatible, Linux compatible
Proper citation: EGAN: Exploratory Gene Association Networks (RRID:SCR_008856) Copy
http://organelledb.lsi.umich.edu/
Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.
Proper citation: Organelle DB (RRID:SCR_007837) Copy
http://pubsearch.stanford.edu/
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. PubSearch is a web-based literature curation tool, allowing curators to search and annotate genes to keywords from articles. It has a simple mySQL database backend and uses a set of Java Servlets and JSPs for querying, modifying, and adding gene, gene-annotation, and literature information. PubSearch can be downloaded from GMOD. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: PubSearch (RRID:SCR_005830) Copy
http://www.plantgdb.org/AtGDB/
Database providing a sequence-centered genome view for Arabidopsis thaliana, with a narrow focus on gene structure annotation. The current genome assembly displayed at AtGDB is version TAIR9. Annotated gene models are TAIR10. They have mapped the complete set of 176,915 publicly available Arabidopsis EST sequences onto the Arabidopsis genome using GeneSeqer, a spliced alignment program incorporating sequence similarity and splice site scoring. About 96% of the available ESTs could be properly aligned with a genomic locus, with the remaining ESTs deriving from organelle genomes and non-Arabidopsis sources or displaying insufficient sequence quality for alignment. The mapping provides verified sets of EST clusters for evaluation of EST clustering programs. Analysis of the spliced alignments suggests corrections to current gene structure annotation and provides examples of alternative and non-canonical pre-mRNA splicing.
Proper citation: Arabidopsis thaliana Genome Database (RRID:SCR_001901) Copy
Database providing a systematic and comprehensive view of morphological phenotypes regulated by plant hormones, as well as regulatory genes participating in numerous plant hormone responses. By integrating the data from mutant studies, transgenic analysis and gene ontology annotation, genes related to the stimulus of eight plant hormones were identified, including abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid and salicylic acid. Another pronounced characteristics of this database is that a phenotype ontology was developed to precisely describe all kinds of morphological processes regulated by plant hormones with standardized vocabularies. To increase the coverage of phytohormone related genes, the database has been updated from AHD to AHD2.0 adding and integrating several pronounced features: (1) added 291 newly published Arabidopsis hormone related genes as well as corrected information (e.g. the arguable ABA receptors) based on the recent 2-year literature; (2) integrated orthologues of sequenced plants in OrthoMCLDB into each gene in the database; (3) integrated predicted miRNA splicing site in each gene in the database; (4) provided genetic relationship of these phytohormone related genes mining from literature, which represents the first effort to construct a relatively comprehensive and complex network of hormone related genes as shown in the home page of our database; (5) In convenience to in-time bioinformatics analysis, they also provided links to a powerful online analysis platform Weblab that they have recently developed, which will allow users to readily perform various sequence analysis with these phytohormone related genes retrieved from AHD2.0; (6) provided links to other protein databases as well as more expression profiling information that would facilitate users for a more systematic analysis related to phytohormone research. Please help to improve the database with your contributions.
Proper citation: Arabidopsis Hormone Database (RRID:SCR_001792) Copy
http://www.megabionet.org/atpid/webfile/
Centralized platform to depict and integrate the information pertaining to protein-protein interaction networks, domain architecture, ortholog information and GO annotation in the Arabidopsis thaliana proteome. The Protein-protein interaction pairs are predicted by integrating several methods with the Naive Baysian Classifier. All other related information curated is manually extracted from published literature and other resources from some expert biologists. You are welcomed to upload your PPI or subcellular localization information or report data errors. Arabidopsis proteins is annotated with information (e.g. functional annotation, subcellular localization, tissue-specific expression, phosphorylation information, SNP phenotype and mutant phenotype, etc.) and interaction qualifications (e.g. transcriptional regulation, complex assembly, functional collaboration, etc.) via further literature text mining and integration of other resources. Meanwhile, the related information is vividly displayed to users through a comprehensive and newly developed display and analytical tools. The system allows the construction of tissue-specific interaction networks with display of canonical pathways.
Proper citation: Arabidopsis thaliana Protein Interactome Database (RRID:SCR_001896) Copy
http://biodev.extra.cea.fr/interoporc/
Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.
Proper citation: InteroPorc (RRID:SCR_002067) Copy
Database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana. Data available includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from data pages to other Arabidopsis resources. The data can be searched, viewed and analyzed. Datasets can also be downloaded. Pages on news, job postings, conference announcements, Arabidopsis lab protocols, and useful links are provided.
Proper citation: TAIR (RRID:SCR_004618) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.