Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 172 results
Snippet view Table view Download 172 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_007283

    This resource has 50+ mentions.

https://ida.loni.usc.edu/login.jsp

Archive used for archiving, searching, sharing, tracking and disseminating neuroimaging and related clinical data. IDA is utilized for dozens of neuroimaging research projects across North America and Europe and accommodates MRI, PET, MRA, DTI and other imaging modalities.

Proper citation: LONI Image and Data Archive (RRID:SCR_007283) Copy   


  • RRID:SCR_007379

    This resource has 1+ mentions.

http://nsr.bioeng.washington.edu/

Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.

Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy   


https://bams1.org/

Knowledge management system designed to handle neurobiological information at different levels of organization of vertebrate nervous system. Database and repository for information about neural circuitry, storing and analyzing data concerned with nomenclature, taxonomy, axonal connections, and neuronal cell types. Handles data and metadata collated from original literature, or inserted by scientists that is associated to four levels of organization of vertebrate nervous system. Data about expressed molecules, neuron types and classes, brain regions, and networks of brain regions.

Proper citation: Brain Architecture Management System (RRID:SCR_007251) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   


http://connectomes.utah.edu/

A web-compliant application that allows connectomics visualization by converting datasets to web-optimized tiles, delivering volume transforms to client devices, and providing groups of users with connectome annotation tools and data simultaneously via conventional internet connections. Viking is an extensible tool for connectomics analysis and is generalizable to histomics applications.

Proper citation: Viking Viewer for Connectomics (RRID:SCR_005986) Copy   


https://github.com/ReproBrainChart

Open data resource for mapping brain development and its associations with mental health. Integrates data from 5 large studies of brain development in youth from three continents (N = 6,346). Bifactor models were used to create harmonized psychiatric phenotypes, capturing major dimensions of psychopathology. Neuroimaging data were carefully curated and processed using consistent pipelines in a reproducible manner.

Proper citation: Reproducible Brain Charts (RRID:SCR_027837) Copy   


  • RRID:SCR_008274

http://www.loni.usc.edu/Software/jViewbox

A portable software framework for medical imaging research. jViewbox consists of a set of Java classes organized under a simple but extensive API that provides the core functionality of 2D image presentation needed by most imaging applications. It follows Java's Swing model closely to make it easy for application developers to build GUIs where end users can use various tools in a tool bar to manipulate the image displays. No optional add-ons or native code is used, which makes jViewBox compatible with any standard Java 2 Runtime Environment (version 1.3 or later).

Proper citation: jViewbox (RRID:SCR_008274) Copy   


  • RRID:SCR_009212

https://CRAN.R-project.org/package=gma

Software package to perform Granger mediation analysis for time series. Includes single level GMA model and two-level GMA model, for time series with hierarchically nested structure.

Proper citation: GMA (RRID:SCR_009212) Copy   


  • RRID:SCR_009603

    This resource has 100+ mentions.

http://ric.uthscsa.edu/mango/

A viewer for medical research images that provides analysis tools and a user interface to navigate image volumes. There are three versions of Mango, each geared for a different platform: * Mango ? Desktop ? Mac OS X, Windows, and Linux * webMango ? Browser ? Safari, Firefox, Chrome, and Internet Explorer * iMango ? Mobile ? Apple iPad Key Features: * Built-in support for DICOM, NIFTI, Analyze, and NEMA-DES formats * Customizable: Create plugins, custom filters, color tables, file formats, and atlases * ROI Editing: Threshold and component-based tools for painting and tracing ROIs * Surface Rendering: Interactive surface models supporting cut planes and overlays * Image Registration: Semi-automatic image coregistration and manual transform editing * Image Stacking: Threshold and transparency-based image overlay stacking * Analysis: Histogram, cross-section, time-series analysis, image and ROI statistics * Processing: Kernel and rank filtering, arithmetic/logic image and ROI calculators

Proper citation: Mango (RRID:SCR_009603) Copy   


  • RRID:SCR_009626

    This resource has 10+ mentions.

http://itools.loni.usc.edu/

An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).

Proper citation: iTools (RRID:SCR_009626) Copy   


http://www.cise.ufl.edu/~abarmpou/lab/fanDTasia/

A Java applet tool for DT-MRI processing. It opens Diffusion-Weighted MRI datasets from user's computer and performs very efficient tensor field estimation using parallel threaded processing on user's browser. No installation is required. It runs on any operating system that supports Java (Windows, Mac, Linux,...). The estimated tensor field is guaranteed to be positive definite second order or higher order and is saved in user's local disc. MATLAB functions are also provided to open the tensor fields for your convenience in case you need to perform further processing. The fanDTasia Java applet provides also vector field visualization for 2nd and 4th-order tensors, as well as calculation of various anisotropic maps. Another useful feature is 3D fiber tracking (DTI-based) which is also shown using 3d graphics on the user's browser.

Proper citation: fanDTasia Java Applet: DT-MRI Processing (RRID:SCR_009624) Copy   


  • RRID:SCR_009588

    This resource has 10+ mentions.

http://www.nmr.mgh.harvard.edu/~jbm/jip/

Software toolkit for analysis of rodent and non-human primate fMRI data. The toolkit consists of binary executables, highly portable open-source c code, and image resources that enable 1) Automated registration based upon mutual information (affine, non-linear warps), with flexible control and visualization of each step; 2) visualization of 4-dimensional data using either mosaic or tri-planar display of the z/slice dimension, and integration of a general linear model for graphical display of time series analysis; 3) A simple and flexible 1st-order GLM for fMRI time series analysis, a 1st-order GLM analysis for PET data within the SRTM framework, plus a 2nd-order GLM analysis following the Worsley 2002 scheme, and 4) MRI templates to place your rodent and non-human primate data into standardized spaces.

Proper citation: JIP Analysis Toolkit (RRID:SCR_009588) Copy   


  • RRID:SCR_009618

    This resource has 10+ mentions.

http://econnectome.umn.edu/

An open-source MATLAB software package for imaging brain functional connectivity from electrophysiological signals. It provides interactive graphical interfaces for EEG/ECoG/MEG preprocessing, source estimation, connectivity analysis and visualization. Connectivity from EEG/ECoG/MEG can be mapped over sensor and source domains. This package is designed for use by researchers in neuroscience, psychology, cognitive science, clinical neurophysiology, neurology and other disciplines. The graphical interface-based platform requires little programming knowledge or experience with MATLAB. eConnectome is developed by the Biomedical Functional Imaging and Neuroengineering Laboratory at the University of Minnesota, directed by Dr. Bin He. The visualization module is jointly developed with Drs. Fabio Babiloni and Laura Astolfi at the University of Rome La Sapienza.

Proper citation: eConnectome (RRID:SCR_009618) Copy   


  • RRID:SCR_009559

http://www.columbia.edu/~dx2103/brainimagescope.html

Software package for processing diffusion tensor imaging data. The following functions are included: 1. Converting imaging data in DICOME format to ANALYZE format 2. Extracting binary brain mask for quick scalp-removing 3. Correcting eddy-current induced distortion 4. Optimized tensor estimation based on noisy diffusion-weighted imaging (DWI) data 5. Scalp removal using a brain mask image 6. Corregistering imaging data and generating deformation field for mapping images from individual spaces to a template or target space 7. Spatial Normalization and Warping DTI 8. Fiber tracking 9. Clustering fiber tracts 10. Identifying brain ventricles and generating binary masks for the baseline and DW imaging data 11. Deriving diffusion anisotropy indices (DAIs) and principal directions (PD) and the corresponding color-coded PD-map.

Proper citation: DTI BrainImageScope (RRID:SCR_009559) Copy   


http://www.nb.uw.edu/

Biomedical technology research center that provides state-of-the-art surface analysis expertise, instrumentation, experimental protocols, and data analysis methods to address surface-related biomedical problems. NESAC/BIO develops and applies surface science methodologies that produce a full understanding of the surface composition, structure, spatial distribution, and orientation of biomaterials and adsorbed biomolecules. The NESAC/BIO program identifies areas where surface science must evolve to keep pace with the growth in biochemical knowledge and biomaterial fabrication technology, and develops instrumentation, experimental protocols, and data analysis methods to achieve this evolution. NESAC/BIO provides state-of-the-art surface analysis tools to researchers in the biomedical community. You can gain access to the NESAC/BIO facilities in one of the following ways: * Collaborative: Propose a project to collaborate on with NESAC/BIO. The project should be rewarding for both groups, and the results should reflect the utility of surface analysis for biomedical research * Service: Ask NESAC/BIO to analyze your biomaterial specimens. The spectra obtained from the analyses will be interpreted for you. * Training: Visit the University of Washington to receive training in surface analysis and personally run experiments for your individual research projects. These experiments should have a high probability for yielding useful information and should not involve the development of new ESCA techniques or methodologies.

Proper citation: National ESCA and Surface Analysis Center for Biomedical Problems (RRID:SCR_001430) Copy   


  • RRID:SCR_001398

    This resource has 100+ mentions.

https://www.mristudio.org/

An image processing program running under Windows suitable for such tasks as tensor calculation, color mapping, fiber tracking, and 3D visualization. Most of operations can be done with only a few clicks. This tool evolved from DTI Studio. Tools in the program can be grouped in the following way: * Image Viewer * Diffusion Tensor Calculations * Fiber Tracking and Editing * 3D Visualization * Image File Management * Region of Interesting (ROI) Drawing and Statistics * Image Registration

Proper citation: MRI Studio (RRID:SCR_001398) Copy   


  • RRID:SCR_001391

    This resource has 1+ mentions.

http://bmsr.usc.edu/software/pneuma/

A set of modules that are used to simulate the autoregulation of the cardiovascular and respiratory systems under conditions of changing sleep-wake state and a variety of physiological and pharmacological interventions. It models the dynamic interactions that take place among the various component mechanisms, including those involved in the chemical control of breathing, heart rate, and blood pressure, as well as the effects of changes in the sleep-wake state and arousal from sleep. PNEUMA includes the autonomic control of the cardiovascular system, chemoreflex and state-related control of breath-to-breath ventilation, state-related and chemoreflex control of upper airway potency, as well as respiratory and circulatory mechanics. The model is capable of simulating the cardiorespiratory responses to sleep onset, arousal, continuous positive airway pressure, the administration of inhaled carbon dioxide and oxygen, Valsalva and Mueller maneuvers, and Cheyne-Stokes respiration during sleep. In PNEUMA 3.0, we have extended the existing integrative model of respiratory, cardiovascular, and sleepwake state control, to incorporate a sub-model of glucoseinsulinfatty acid regulation. The extended model is capable of simulating the metabolic control of glucoseinsulin dynamics and its interactions with the autonomic nervous system. The interactions between autonomic and metabolic control include the circadian regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in glucose and free fatty acids in plasma, metabolic coupling among tissues and organs mediated by insulin and epinephrine, as well as the effect of insulin on peripheral vascular sympathetic activity. This extended model represents a starting point from which further in silico investigations into the interaction between the autonomic nervous system and the metabolic control system can proceed. Features in PNEUMA 3.0 * Incorporates metabolic component based on prior models of glucose-insulin regulation and free fatty acid (FFA) regulation. * Changes in sympathetic activity from the autonomic portion of PNEUMA produce changes in epinephrine output, which in turn affects the metabolic sub-model. * Inputs from the dietary intake of glucose and external interventions, such as insulin injections, have also been incorporated. * Also incorporated is autonomic feedback from the metabolic component to the rest of PNEUMA: changes in insulin level lead to changes in sympathetic tone. System Requirements: PNEUMA requires Matlab R2007b or higher with the accompanying version of Simulink to be installed on your computer.

Proper citation: PNEUMA (RRID:SCR_001391) Copy   


http://radiology.arizona.edu/CGRI/

Biomedical technology resource center that develops new gamma-ray imaging instruments and techniques that yield substantially improved spatial and temporal resolutions. The Center makes its imagers and expertise available to a wide community of biomedical and clinical researchers through collaborative and service-oriented interactions. The collaborative research applies these new imaging tools to basic research in functional genomics, proteomics, cancer, cardiovascular disease and cognitive neuroscience, and to clinical research in tumor detection and other selected topics. There are five core research projects: * Detector technology research and development * Reconstruction algorithms and system modeling * Data acquisition, signal processing, and system development * Image-quality assessment and system optimization * Techniques for molecular imaging

Proper citation: Center for Gamma Ray Imaging (RRID:SCR_001384) Copy   


  • RRID:SCR_001728

    This resource has 1+ mentions.

http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. A collection of software modules for image data handling, pre-processing, segmentation, inspection, editing, post-processing, and secondary analysis. These modules can be scripted to accomplish a variety of automated image analysis tasks. All of the modules are written in accordance with software practices of the Insight Toolkit Community. Importantly, all modules are accessible through the Python scripting language which allows users to create scripts to accomplish sophisticated associative image analysis tasks over multi-dimensional microscopy image data. This language works on most computing platforms, providing a high degree of platform independence. Another important design principle is the use of standardized XML file formats for data interchange between modules.

Proper citation: Farsight Toolkit (RRID:SCR_001728) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X