Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 65 results
Snippet view Table view Download 65 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005682

    This resource has 1+ mentions.

http://llama.mshri.on.ca/gofish/GoFishWelcome.html

Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GoFish (RRID:SCR_005682) Copy   


  • RRID:SCR_005507

    This resource has 100+ mentions.

http://microbesonline.org/

MicrobesOnline is designed specifically to facilitate comparative studies on prokaryotic genomes. It is an entry point for operon, regulons, cis-regulatory and network predictions based on comparative analysis of genomes. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

Proper citation: MicrobesOnline (RRID:SCR_005507) Copy   


  • RRID:SCR_005711

    This resource has 1+ mentions.

http://llama.mshri.on.ca/

The Roth Laboratory is designing and interpreting large-scale experiments to understand pathway structure and its relationship to phenotype and human disease. Software for research focused on a specific research goal is available. Current experimental interests: * Exploiting parallel sequencing technology to phenotype all pairwise gene deletion combinations in S. cerevisiae, with initial application to genes involved in transcription. * Generation of S. cerevisiae strains carrying dozens of chosen targeted deletions, with initial application to delete all ABC transporters imparting multidrug resistance. * Targeted insertion of gene sets encoding entire human pathways into S. cerevisiae, with initial application to genes involved in drug metabolism. Current computational interests: * Systematic analysis of genetic interaction to reveal redundant systems and order of action in genetic pathways * Integrating large-scale studies - including phenotype, genetic epistasis, protein-protein and transcription-regulatory interactions and sequence patterns - to quantitatively assign function to genes and guide experimentation and disease association studies. * Alternative splicing and its relationship to protein interaction networks.

Proper citation: Roth Laboratory (RRID:SCR_005711) Copy   


  • RRID:SCR_005709

    This resource has 1000+ mentions.

http://genemania.org/

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMANIA (RRID:SCR_005709) Copy   


  • RRID:SCR_006121

    This resource has 10+ mentions.

http://stormo.wustl.edu/ScerTF

Catalog of over 1,200 position weight matrices (PWMs) for 196 different yeast transcription factors (TFs). They've curated 11 literature sources, benchmarked the published position-specific scoring matrices against in-vivo TF occupancy data and TF deletion experiments, and combined the most accurate models to produce a single collection of the best performing weight matrices for Saccharomyces cerevisiae. ScerTF is useful for a wide range of problems, such as linking regulatory sites with transcription factors, identifying a transcription factor based on a user-input matrix, finding the genes bound/regulated by a particular TF, and finding regulatory interactions between transcription factors. Enter a TF name to find the recommended matrix for a particular TF, or enter a nucleotide sequence to identify all TFs that could bind a particular region.

Proper citation: ScerTF (RRID:SCR_006121) Copy   


  • RRID:SCR_006013

    This resource has 100+ mentions.

http://fungidb.org/fungidb/

FungiDB is a database for functional and evolutionary comparison of fungal genomes. FungiDB is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal "Zygomycete" lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.

Proper citation: FungiDB (RRID:SCR_006013) Copy   


  • RRID:SCR_003009

    This resource has 10+ mentions.

http://www.GeneWeaver.org

Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.

Proper citation: Gene Weaver (RRID:SCR_003009) Copy   


http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/

IDEAL, Intrinsically Disordered proteins with Extensive Annotations and Literature, is a collection of knowledge on experimentally verified intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). IDEAL contains manually curated annotations on IDPs in locations, structures, and functional sites such as protein binding regions and posttranslational modification sites together with references and structural domain assignments. Protean segment One of the unique phenomena seen in IDPs is so-called the coupled folding and binding, where a short flexible segment can bind to its binding partner with forming a specific structure to act as a molecular recognition element. IDEAL explicitly annotates these regions as protean segment (ProS) when unstructured and structured information are both available in the region. Access to the data All the entries are tabulated in the list and individual entries can be retrieved by using the search tool at the upper-right corner in this page. IDEAL also provides the BLAST search, which can find homologs in IDEAL. All the information in IDEAL can be downloaded in the XML file.

Proper citation: IDEAL - Intrinsically Disordered proteins with Extensive Annotations and Literature (RRID:SCR_006027) Copy   


http://www.rcsb.org/#Category-welcome

Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.

Proper citation: Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (RRID:SCR_012820) Copy   


  • RRID:SCR_008918

    This resource has 10+ mentions.

http://clipserve.clip.ubc.ca/topfind

An integrated knowledgebase focused on protein termini, their formation by proteases and functional implications. It contains information about the processing and the processing state of proteins and functional implications thereof derived from research literature, contributions by the scientific community and biological databases. It lists more than 120,000 N- and C-termini and almost 10,000 cleavages. TopFIND is a resource for comprehensive coverage of protein N- and C-termini discovered by all available in silico, in vitro as well as in vivo methodologies. It makes use of existing knowledge by seamless integration of data from UniProt and MEROPS and provides access to new data from community submission and manual literature curating. It renders modifications of protein termini, such as acetylation and citrulination, easily accessible and searchable and provides the means to identify and analyse extend and distribution of terminal modifications across a protein. The data is presented to the user with a strong emphasis on the relation to curated background information and underlying evidence that led to the observation of a terminus, its modification or proteolytic cleavage. In brief the protein information, its domain structure, protein termini, terminus modifications and proteolytic processing of and by other proteins is listed. All information is accompanied by metadata like its original source, method of identification, confidence measurement or related publication. A positional cross correlation evaluation matches termini and cleavage sites with protein features (such as amino acid variants) and domains to highlight potential effects and dependencies in a unique way. Also, a network view of all proteins showing their functional dependency as protease, substrate or protease inhibitor tied in with protein interactions is provided for the easy evaluation of network wide effects. A powerful yet user friendly filtering mechanism allows the presented data to be filtered based on parameters like methodology used, in vivo relevance, confidence or data source (e.g. limited to a single laboratory or publication). This provides means to assess physiological relevant data and to deduce functional information and hypotheses relevant to the bench scientist. TopFIND PROVIDES: * Integration of protein termini with proteolytic processing and protein features * Displays proteases and substrates within their protease web including detailed evidence information * Fully supports the Human Proteome Project through search by chromosome location CONTRIBUTE * Submit your N- or C-termini datasets * Contribute information on protein cleavages * Provide detailed experimental description, sample information and raw data

Proper citation: TopFIND (RRID:SCR_008918) Copy   


  • RRID:SCR_008737

    This resource has 10+ mentions.

http://www.textpresso.org/

An information extracting and processing package for biological literature that can be used online or installed locally via a downloadable software package, http://www.textpresso.org/downloads.html Textpresso's two major elements are (1) access to full text, so that entire articles can be searched, and (2) introduction of categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g., methods, etc). A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. The Textpresso project serves the biological and biomedical research community by providing: * Full text literature searches of model organism research and subject-specific articles at individual sites. Major elements of these search engines are (1) access to full text, so that the entire content of articles can be searched, and (2) search capabilities using categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or identify one (e.g., cell, gene, allele, etc). The search engines are flexible, enabling users to query the entire literature using keywords, one or more categories or a combination of keywords and categories. * Text classification and mining of biomedical literature for database curation. They help database curators to identify and extract biological entities and facts from the full text of research articles. Examples of entity identification and extraction include new allele and gene names and human disease gene orthologs; examples of fact identification and extraction include sentence retrieval for curating gene-gene regulation, Gene Ontology (GO) cellular components and GO molecular function annotations. In addition they classify papers according to curation needs. They employ a variety of methods such as hidden Markov models, support vector machines, conditional random fields and pattern matches. Our collaborators include WormBase, FlyBase, SGD, TAIR, dictyBase and the Neuroscience Information Framework. They are looking forward to collaborating with more model organism databases and projects. * Linking biological entities in PDF and online journal articles to online databases. They have established a journal article mark-up pipeline that links select content of Genetics journal articles to model organism databases such as WormBase and SGD. The entity markup pipeline links over nine classes of objects including genes, proteins, alleles, phenotypes, and anatomical terms to the appropriate page at each database. The first article published with online and PDF-embedded hyperlinks to WormBase appeared in the September 2009 issue of Genetics. As of January 2011, we have processed around 70 articles, to be continued indefinitely. Extension of this pipeline to other journals and model organism databases is planned. Textpresso is useful as a search engine for researchers as well as a curation tool. It was developed as a part of WormBase and is used extensively by C. elegans curators. Textpresso has currently been implemented for 24 different literatures, among them Neuroscience, and can readily be extended to other corpora of text.

Proper citation: Textpresso (RRID:SCR_008737) Copy   


  • RRID:SCR_011783

    This resource has 1+ mentions.

http://annmap.picr.man.ac.uk/

A genome browser that includes mappings between genomic features and Affymetrix microarrays. Associated with annmap is: * a Bioconductor package, annmap that provides programmatic access to the underlying MySQL database tables (which are freely available for download on this site) * xmapbridge, a Bioconductor package that outputs numeric data in a form suitable for presentation in the browser. This is supported by XMapBridge, a Java client that sits on the local desktop and performs the graph rendering for the browser.

Proper citation: Annmap (RRID:SCR_011783) Copy   


http://cbl-gorilla.cs.technion.ac.il/

A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.

Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy   


  • RRID:SCR_006385

    This resource has 1+ mentions.

http://gtlinker.cnb.csic.es/

Web application that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. It can also be accessed through its web service.

Proper citation: GeneTerm Linker (RRID:SCR_006385) Copy   


http://www.kidneycenter.pitt.edu/cores/model_organisms.html

Core that uses the yeast S. cerevisiae and the zebrafish D. rerio to dissect fundamental aspects of kidney development and protein structure and function.

Proper citation: Pittsburgh Center for Kidney Research Model Organisms (RRID:SCR_015288) Copy   


http://gryc.inra.fr

Database which provides annotated sequence data for the genomes of basidio and ascomycete yeasts. The resources provided include genetic element pages, data sets for downloading, quick and advanced searches, facilities for BLAST comparisons, and a genome browser powered by JBrowse from GMOD.

Proper citation: Genome Resources for Yeast Chromosomes (RRID:SCR_015005) Copy   


http://www.ymdb.ca/

A manually curated database of small molecule metabolites found in or produced by Saccharomyces cerevisiae (also known as Baker's yeast and Brewer's yeast). This database covers metabolites described in textbooks, scientific journals, metabolic reconstructions and other electronic databases. YMDB contains metabolites arising from normal S. cerevisiae metabolism under defined laboratory conditions as well as metabolites generated by S. cerevisiae when used in baking and in the production of wines, beers and spirits. YMDB currently contains 2027 small molecules with 857 associated enzymes and 138 associated transporters. Each small molecule has 48 data fields describing the metabolite, its chemical properties and links to spectral and chemical databases. Each enzyme/transporter is linked to its associated metabolites and has 30 data fields describing both the gene and corresponding protein. Users may search through the YMDB using a variety of database-specific tools. The simple text query supports general text queries of the textual component of the database. By selecting either metabolites or proteins in the search for field it is possible to restrict the search and the returned results to only those data associated with metabolites or with proteins. Clicking on the Browse button generates a tabular synopsis of YMDB's content. This browser view allows users to casually scroll through the database or re-sort its contents. Clicking on a given MetaboCard button brings up the full data content for the corresponding metabolite. A complete explanation of all the YMDB fields and sources is available. Under the Search link users will find a number of search options listed in a pull-down menu. The Chem Query option allows users to draw (using MarvinSketch applet or a ChemSketch applet) or to type (SMILES string) a chemical compound and to search the YMDB for chemicals similar or identical to the query compound. The Advanced Search option supports a more sophisticated text search of the text portion of YMDB. The Sequence Search button allows users to conduct BLASTP (protein) sequence searches of all sequences contained in YMDB. Both single and multiple sequence (i.e. whole proteome) BLAST queries are supported. YMDB also supports a Data Extractor option that allows specific data fields or combinations of data fields to be searched and/or extracted. Spectral searches of YMDB's reference compound NMR and MS spectral data are also supported through its MS, MS/MS, GC/MS and NMR Spectra Search links. Users may download YMDB's complete textual data, chemical structures and sequence data by clicking on the Download button.

Proper citation: YMDB - Yeast Metabolome Database (RRID:SCR_005890) Copy   


http://www.yeastract.com

A curated repository of more than 206000 regulatory associations between transcription factors (TF) and target genes in Saccharomyces cerevisiae, based on more than 1300 bibliographic references. It also includes the description of 326 specific DNA binding sites shared among 113 characterized TFs. Further information about each Yeast gene has been extracted from the Saccharomyces Genome Database (SGD). For each gene the associated Gene Ontology (GO) terms and their hierarchy in GO was obtained from the GO consortium. Currently, YEASTRACT maintains a total of 7130 terms from GO. The nucleotide sequences of the promoter and coding regions for Yeast genes were obtained from Regulatory Sequence Analysis Tools (RSAT). All the information in YEASTRACT is updated regularly to match the latest data from SGD, GO consortium, RSA Tools and recent literature on yeast regulatory networks. YEASTRACT includes DISCOVERER, a set of tools that can be used to identify complex motifs found to be over-represented in the promoter regions of co-regulated genes. DISCOVERER is based on the MUSA algorithm. These algorithms take as input a list of genes and identify over-represented motifs, which can then be compared with transcription factor binding sites described in the YEASTRACT database.

Proper citation: Yeast Search for Transcriptional Regulators And Consensus Tracking (RRID:SCR_006076) Copy   


  • RRID:SCR_007144

    This resource has 1+ mentions.

http://compbio.soe.ucsc.edu/yeast_introns.html

Database of information about the spliceosomal introns of the yeast Saccharomyces cerevisiae. Listed are known spliceosomal introns in the yeast genome and the splice sites actually used are documented. Through the use of microarrays designed to monitor splicing, they are beginning to identify and analyze splice site context in terms of the nature and activities of the trans-acting factors that mediate splice site recognition. In version 3.0, expression data that relates to the efficiency of splicing relative to other processes in strains of yeast lacking nonessential splicing factors is included. These data are displayed on each intron page for browsing and can be downloaded for other types of analysis.

Proper citation: Yeast Intron Database (RRID:SCR_007144) Copy   


  • RRID:SCR_001368

    This resource has 50+ mentions.

http://mitominer.mrc-mbu.cam.ac.uk/

A database of mitochondrial proteomics data. It includes two sets of proteins: the MitoMiner Reference Set, which has 10477 proteins from 12 species; and MitoCarta, which has 2909 proteins from mouse and human mitochondrial proteins. MitoMiner provides annotation from the Gene Ontology (GO) and UniProt databases. This reference set contains all proteins that are annotated by either of these resources as mitochondrial in any of the species included in MitoMiner. MitoMiner data via is available via Application Programming Interface (API). The client libraries are provided in Perl, Python, Ruby and Java.

Proper citation: MitoMiner (RRID:SCR_001368) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X