Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 293 results
Snippet view Table view Download 293 Result(s)
Click the to add this resource to a Collection

http://grants.nih.gov/podcasts/All_About_Grants/index.htm

The Office of Extramural Research (OER) presents conversations with NIH staff members. Designed for investigators, fellows, students, research administrators, and others, we provide insights on grant topics from those who live and breathe the information. In mp3 and updated monthly. Transcripts are also available. So You Wanna... Keep Up with What''''s Hot? Prepare a Successful Grant Application? Suggest a Topic? Understand How Your Grant is Reviewed? Be an NIH Investigator?

Proper citation: All About Grants Podcast (RRID:SCR_005621) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   


  • RRID:SCR_003424

    This resource has 1+ mentions.

http://portal.ncibi.org/gateway/mimiplugin.html

The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.

Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy   


https://services.healthtech.dtu.dk/

Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.

Proper citation: DTU Center for Biological Sequence Analysis (RRID:SCR_003590) Copy   


https://rarediseases.org/organizations/nihoffice-of-rare-disease-research/

Organization which develops and maintains a centralized database on rare disease clinical research supported by the NIH. It also stimulates rare disease research by supporting scientific workshops and symposia, responds to requests for information on highly technical matters and matters of public policy, provides information to the Office of the Director on matters relating to rare diseases and orphan products, and coordinates and serves as a liaison with Federal and non-Federal national and international organizations.

Proper citation: Office of Rare Diseases Research (RRID:SCR_004121) Copy   


  • RRID:SCR_001473

http://www.sfn.org/SiteObjects/published/0000BDF20016F63800FD712C30FA42DD/1304F8BE908CE526359306C138737F9F/file/NRF%20Contacts.pdf

This resource provides a list of federal program officials in the neurosciences. An informal compendium of names and contact information for nearly 300 research grant and scientific review administrators in 21 organizational units.

Proper citation: NRF Contacts (RRID:SCR_001473) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


  • RRID:SCR_002066

    This resource has 10+ mentions.

http://www.neuralgate.org/download/NeuralAct

Software to visualize electrocorticographic (ECoG) and possibly also other kinds of neural activity (EEG / EMG/ DOT) on a 3D model of the cortical surface. The tool has been used to produce cortical activation images and image sequences in several recent studies using ECoG. The tool is written in matlab. The package is thoroughly documented and includes a demo.

Proper citation: NeuralAct (RRID:SCR_002066) Copy   


http://med.stanford.edu/narcolepsy.html

The Stanford Center for Narcolepsy was established in the 1980s as part of the Department of Psychiatry and Behavioral Sciences. Today, it is the world leader in narcolepsy research with more than 100 articles on narcolepsy to its name. The Stanford Center for Narcolepsy was the first to report that narcolepsy-cataplexy is caused by hypocretin (orexin) abnormalities in both animal models and humans. Under the direction of Drs. Emmanuel Mignot and Seiji Nishino, the Stanford Center for Narcolepsy today treats several hundred patients with the disorder each year, many of whom participate in various research protocols. Other research protocols are conducted in animal models of narcolespy. We are always looking for volunteers in our narcolepsy research studies. We are presently recruiting narcoleptic patients for genetic studies, drug clinical trials, hypocretin measurement studies in the CSF and functional MRI studies. Monetary gifts to the Center for Narcolepsy are welcome. If you wish to make the ultimate gift, please consider participating in our Brain Donation Program. To advance our understanding of the cause, course, and treatment of narcolepsy, in 2001 Stanford University started a program to obtain human brain tissue for use in narcolepsy research. Donated brains provide an invaluable resource and we have already used previously donated brains to demonstrate that narcolepsy is caused by a lack of a very specific type of cell in the brain, the hypocretin (orexin) neuron. While the brain donations do not directly help the donor, they provide an invaluable resource and a gift to others. The real answers as to what causes or occurrs in the brain when one has narcolepsy will only be definitively understood through the study of brain tissue. Through these precious donations, narcolepsy may eventually be prevented or reversible. We currently are seeking brains from people with narcolepsy (with cataplexy and without), idiopathic hypersomnia and controls or people without a diagnosed sleep disorder of excessive sleepiness. Control brains are quite important to research, as findings must always be compared to tissue of a non-affected person. Friends and loved ones of people who suffer with narcoleps may wish to donate to our program to help fill this very important need. Refer to the Movies tab for movies of Narcolepsy / Cataplexy.

Proper citation: Stanford Center for Narcolepsy (RRID:SCR_007021) Copy   


https://mctfr.psych.umn.edu/

Composed of many projects, including the Minnesota Twin Family Study (MTFS) and The Sibling Interaction and Behavior Study (SIBS), this research center seeks to identify genetic and environmental influences on development and psychological traits. Both projects are longitudinal research studies including twins, siblings, and parents. Over 9800 individuals have contributed to these exciting projects! By studying twins and siblings and their families, we can estimate how genes and environment interact to influence character, strengths, vulnerabilities and values. Participants in the MTFS include families with same-sex identical or fraternal twins who were born in Minnesota. The SIBS study is comprised of adoptive and biological siblings and their parents. Most participants partake in day-long visits to the MCTFR, and due to the longitudinal nature of our projects, they return every 3-4 years for follow-up visits.

Proper citation: Minnesota Center for Twin and Family Research (RRID:SCR_006948) Copy   


http://www.med.upenn.edu/cndr/biosamples-brainbank.html

A brain and tissue bank that contains human brain samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and other related neurodegenerative dementias and movement disorders. This brain bank serves as a resource for scientists and researchers, providing access to tissue samples for further research. While priority is given to University of Pennsylvania researchers, this bank will provide requests to researchers not associated with the University of Pennsylvania. This tissue bank accepts donations from those seeing a University of Pennsylvania physician or collaborator.

Proper citation: University of Pennslyvania Brain Bank (RRID:SCR_008820) Copy   


  • RRID:SCR_008744

    This resource has 1+ mentions.

http://www.neuroanatomy.ca/

The WEB ATLAS contains photographs of dissected brains showing important structures. The diagrams folder contains drawings showing functionally important parts of the brain as well as drawings of dissections adapted from C.G. Smith. We are particularly pleased to make Nan Cheney''s medical illustrations of the brain and the head available. The STROKE MODEL portion of the website has syndromes associated with strokes of different vessels of the brain as well as extensive diagrams and tables about the vessels of the brain. The 3D RECONSTRUCTIONS featured on this website were made from MRI scans through the brain - where indicated the source material was from the NIH Visible Human Project. The website will also contain material important for the neuroanatomy labs for med students at UBC. Weekly quizzes will help you keep up with studying the material, the podcasts will help you review material presented in the labs, and the weekly wikis will help you share information with your peers.

Proper citation: Neuroanatomy at UBC (RRID:SCR_008744) Copy   


  • RRID:SCR_008978

    This resource has 1+ mentions.

https://portal.dbmi.hms.harvard.edu/projects/GRDR/

Data repository of de-identified patient data, aggregated in a standardized manner, to enable analyses across many rare diseases and to facilitate various research projects, clinical studies, and clinical trials. The aim is to facilitate drug and therapeutics development, and to improve the quality of life for the many millions of people who are suffering from rare diseases. The goal of GRDR is to enable analyses of data across many rare diseases and to facilitate clinical trials and other studies. During the two-year pilot program, a web-based template will be developed to allow any patient organization to establish a rare disease patient registry. At the conclusion of the program, guidance will be available to patient groups to establish a registry and to contribute de-identified patient data to the GRDR repository. A Request for Information (RFI) was released on February 10, 2012 requesting information from patient groups about their interest in participating in a GRDR pilot project. ORDR selected 30 patient organizations to participate in this pilot program to test the different functionalities of the GRDR. Fifteen (15) organizations with established registries and 15 organizations that do not have patient registry. The 15 patient groups, each without a registry, were selected to assist in testing the implementation of the ORDR Common Data Elements (CDEs) in the newly developed registry infrastructure. These organizations will participate in the development and promotion of a new patient registry for their rare disease. The GRDR program will fund the development and hosting of the registry during the pilot program. Thereafter, the patient registry is expected to be self-sustaining.The 15 established patient registries were selected to integrate their de-identified data into the GRDR to evaluate the data mapping and data import/export processes. The GRDR team will assist these organizations in mapping their existing registry data to the CDEs. Participating registries must have a means to export their de-identified registry data into a specified data format that will facilitate loading the data into the GRDR repository on a regular basis. The GRDR will also develop the capability to link patients'''' data and medical information to donated biospecimens by using a Voluntary Global Unique Patient Identifier (GUID). The identifier will enable the creation of an interface between the patient registries that are linked to biorepositories and the Rare Disease Human Biospecimens/Biorepositories (RD-HUB) http://biospecimens.ordr.info.nih.gov/.

Proper citation: GRDR (RRID:SCR_008978) Copy   


  • RRID:SCR_010520

    This resource has 1+ mentions.

http://www.mssm.edu/research/programs/manhattan-hiv-brain-bank/

Biorepository of tissues and fluids relevant for the neurologic, neuropsychologic, psychiatric and neuropathologic manifestations of HIV infection, linked to medical records and an on-going clinical trial for research use by the scientific community. The MHBB conducts a longitudinal, observational study that follows a group of HIV-infected individuals who have agreed to be fluid and organ donors for the purposes of AIDS research. They are currently the largest, multidisciplinary neuroAIDS cohort in New York City, the epicenter of the US HIV epidemic. Research participants undergo regular neurologic, neuropsychologic, and psychiatric evaluations, and provide body fluid samples that are linked to clinical information. Upon their demise, study participants become organ donors. This program has supplied clinical information, tissue, and fluid samples to over 70 qualified AIDS researchers across America, Europe and Australia. In fulfilling its resource mission, the MHBB functions as part of the National NeuroAIDS Tissue Consortium (NNTC). MHBB provides a means by which people living with HIV can be engaged in the struggle to improve our knowledge about HIV infection and the damage it causes to the body.

Proper citation: Manhattan HIV Brain Bank (RRID:SCR_010520) Copy   


http://www.vetmed.vt.edu/research/amrv.asp

An institutional training program to train veterinarians in conducting research. The program trains veterinarians in acquiring the skills of a researcher as they undergo a specific M.S. or Ph.D program. The program urges graduates to take part in research concerning animal models of infectious diseases, immunology, and nutrition, among other health topics.

Proper citation: Post-DVM Training Program on Animal Model Research for Veterinarians (RRID:SCR_008303) Copy   


  • RRID:SCR_008395

    This resource has 5000+ mentions.

http://salilab.org/modeller/modeller.html

Software tool as Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints. Used for homology or comparative modeling of protein three dimensional structures. User provides alignment of sequence to be modeled with known related structures and MODELLER automatically calculates model containing all non hydrogen atoms.

Proper citation: MODELLER (RRID:SCR_008395) Copy   


  • RRID:SCR_008470

    This resource has 10+ mentions.

http://helixweb.nih.gov/dnaworks

DNAWorks automates the design of oligonucleotides for gene synthesis by PCR-based methods. The availability of sequences of entire genomes has dramatically increased the number of protein targets, many of which will need to be overexpressed in cells other than the original source of DNA. Gene synthesis often provides a fast and economically efficient approach. The synthetic gene can be optimized for expression and constructed for easy mutational manipulation without regard to the parent genome. DNAWorks accesses a computer program that automates the design of oligonucleotides for gene synthesis. The website provides forms for simple input information, i.e. amino acid sequence of the target protein and melting temperature (needed for the gene assembly) of synthetic oligonucleotides. The program outputs a series of oligonucleotide sequences with codons optimized for expression in an organism of choice. Those oligonucleotides are characterized by highly homogeneous melting temperatures and a minimized tendency for hairpin formation. The approach presented here simplifies the production of proteins from a wide variety of organisms for genomics-based studies.

Proper citation: DNAWorks at Helix Systems (RRID:SCR_008470) Copy   


http://www.nitrc.org/projects/gscca_2013/

Group Sparse Canonical Correlation Analysis is a method designed to study the mutual relationship between two different types of data.

Proper citation: Group Sparse Canonical Correlation Analysis (RRID:SCR_014977) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005787

    This resource has 1+ mentions.

http://umbbd.msi.umn.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2014. Database containing information on microbial biocatalytic reactions and biodegradation pathways for primarily xenobiotic, chemical compounds. Its goal is to provide information on microbial enzyme-catalyzed reactions that are important for biotechnology. The reactions covered are studied for basic understanding of nature, biocatalysis leading to specialty chemical manufacture, and biodegradation of environmental pollutants. Individual reactions and metabolic pathways are presented with information on the starting and intermediate chemical compounds, the organisms that transform the compounds, the enzymes, and the genes. The present database has been successfully used to teach enzymology and use of biochemical Internet information resources to advanced undergraduate and graduate students, and is being expanded primarily with the help of such students. In addition to reactions and pathways, this database also contains Biochemical Periodic Tables and a Pathway Prediction System. * Search the UM-BBD for compound, enzyme, microorganism, pathway, or BT rule name; chemical formula; chemical structure; CAS Registry Number; or EC code. * Go to Pathways and Metapathways in the UM-BBD * Lists of 203 pathways; 1400 reactions; 1296 compounds; 916 enzymes; 510 microorganism entries; 245 biotransformation rules; 50 organic functional groups; 76 reactions of naphthalene 1,2-dioxygenase; 109 reactions of toluene dioxygenase; Graphical UM-BBD Overview; and Other Graphics (Metapathway and Pathway Maps and Reaction Mechanisms).

Proper citation: UM-BBD (RRID:SCR_005787) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X