Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.gene-regulation.com/pub/databases.html#transpath
Database on eukaryotic transcription factors, their experimentally-proven binding sites, consensus binding sequences (positional weight matrices) and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. It can either be used as an encyclopedia, for both specific and general information on signal transduction, or can serve as a network analyzer. Cross-references to important sequence and signature databases such as EMBL/GenBank UniProt/Swiss-Prot InterPro or Ensembl EntrezGene RefSeq are provided. The database is equipped with the tools for data visualization and analysis. It has three modules: the first one is the data, which have been manually extracted, mostly from the primary literature; the second is PathwayBuilder, which provides several different types of network visualization and hence facilitates understanding; the third is ArrayAnalyzer, which is particularly suited to gene expression array interpretation, and is able to identify key molecules within signalling networks (potential drug targets). These key molecules could be responsible for the coordinated regulation of downstream events. Manual data extraction focuses on direct reactions between signalling molecules and the experimental evidence for them, including species of genes/proteins used in individual experiments, experimental systems, materials and methods. This combination of materials and methods is used in TRANSPATH to assign a quality value to each experimentally proven reaction, which reflects the probability that this reaction would happen under physiological conditions. Another important feature in TRANSPATH is the inclusion of transcription factor-gene relations, which are transferred from TRANSFAC, a database focused on transcription regulation and transcription factors. Since interactions between molecules are mainly direct, this allows a complete and stepwise pathway reconstruction from ligands to regulated genes.
Proper citation: TRANSPATH (RRID:SCR_005640) Copy
Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMANIA (RRID:SCR_005709) Copy
http://llama.mshri.on.ca/gofish/GoFishWelcome.html
Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GoFish (RRID:SCR_005682) Copy
BrainStars (or B*) is a quantitative expression database of the adult mouse brain. The database has genome-wide expression profile at 51 adult mouse CNS regions. For 51 CNS regions, slices (0.5-mm thick) of mouse brain were cut on a Mouse Brain Matrix, frozen, and the specific regions were punched out bilaterally with a microdissecting needle (gauge 0.5 mm) under a stereomicroscope. For each region, we took samples every 4 hours, starting at ZT0 (Zeitgaber time 0; the time of lights on), for 24 hours (6 time-point samples for each region), and we pooled the samples from the different time points. We independently sampled each region twice (n=2). These samples were purified their RNA, and measured with Affymetrix GeneChip Mouse Genome 430 2.0 arrays. Expression values were then summarized with the RMA method. After several analysis with the expression data, the data and analysis results were stored in the BrainStars database. The database has a REST-like Web API interface for accessing from your Web applications. This document shows how to access the database via our Web API.
Proper citation: BrainStars (RRID:SCR_005810) Copy
http://great.stanford.edu/public/html/splash.php
Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool
Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy
http://inparanoid.sbc.su.se/cgi-bin/index.cgi
Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.
Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy
Multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. The raw data, search results, and full builds can be downloaded for other uses. All results of sequence searching are processed through PeptideProphet to derive a probability of correct identification for all results in a uniform manner ensuring a high quality database. All peptides are mapped to Ensembl and can be viewed as custom tracks on the Ensembl genome browser. The long term goal of the project is full annotation of eukaryotic genomes through a thorough validation of expressed proteins. The PeptideAtlas provides a method and a framework to accommodate proteome information coming from high-throughput proteomics technologies. The online database administers experimental data in the public domain. You are encouraged to contribute to the database.
Proper citation: PeptideAtlas (RRID:SCR_006783) Copy
Repository for toxicogenomics data, including study design and timeline, clinical chemistry and histopathology findings and microarray and proteomics data. Data derived from studies of chemicals and of genetic alterations, and is compatible with clinical and environmental studies. Data relating to environmental health, pharmacology, and toxicology. It is not necessary to have microarray data, but study design and phenotypic anchoring data are required.CEBS contains raw microarray data collected in accordance with MIAME guidelines and provides tools for data selection, pre-processing and analysis resulting in annotated lists of genes of interest. Biomedical Investigation Database is another component of CEBS system. used to load and curate study data prior to export to CEBS, in addition to capturing and displaying novel data types such as PCR data, or additional fields of interest, including those defined by the HESI Toxicogenomics Committee. BID has been shared with Health Canada and the US Environmental Protection Agency.
Proper citation: Chemical Effects in Biological Systems (CEBS) (RRID:SCR_006778) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.
Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)
Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy
Open source software system for capturing, storing and analyzing raw phenotyping data from SOPs contained in EMPReSS, it provides access to raw and annotated mouse phenotyping data generated from primary pipelines such as EMPReSSlim and secondary procedures from specialist centers. Mutants of interest can be identified by searching the gene or the predicted phenotype. You can also access phenotype data from the EMPReSSlim Pipeline for inbred mouse strains. Initially EuroPhenome was developed within the EUMORPHIA programme to capture and store pilot phenotyping data obtained on four background strains (C57BL/6J, C3H/HeBFeJ, BALB/cByJ and 129/SvPas). EUMORPHIA (European Union Mouse Research for Public Health and Industrial Applications) was a large project comprising of 18 research centers in 8 European countries, with the main focus of the project being the development of novel approaches in phenotyping, mutagenesis and informatics to improve the characterization of mouse models for understanding human molecular physiology and pathology. The current version of EuroPhenome is capturing data from the EUMODIC project as well as the WTSI MGP, HMGU GMC pipeline and the CMHD. EUMODIC is undertaking a primary phenotype assessment of up to 500 mouse mutant lines derived from ES cells developed in the EUCOMM project as well as other lines. Lines showing an interesting phenotype will be subject to a more in depth assessment. EUMODIC is building upon the comprehensive database of standardized phenotyping protocols, called EMPReSS, developed by the EUMORPHIA project. EUMODIC has developed a selection of these screens, called EMPReSSslim, to enable comprehensive, high throughput, primary phenotyping of large numbers of mice. Phenovariants are annotated using a automated pipeline, which assigns a MP term if the mutant data is statistically different to the baseline data. This data is shown in the Phenomap and the mine for a mutant tool. Please note that a statistically significant result and the subsequent MP annotation does not necessarily mean a true phenovariant. There are other factors that could cause this result that have not been accounted for in the analysis. It is the responsibility of the user to download the data and use their expert knowledge or further analysis to decide whether they agree or not. EuroPhenome is primarily based in the bioinformatics group at MRC Harwell. The development of EuroPhenome is in collaboration with the Helmholtz Zentrum Munchen, Germany, the Wellcome Trust Sanger Institute, UK and the Institut Clinique de la Souris, France.
Proper citation: Europhenome Mouse Phenotyping Resource (RRID:SCR_006935) Copy
http://scalablebrainatlas.incf.org/
A web-based, interactive brain atlas viewer, containing a growing number of atlas templates for various species, including mouse, macaque and human. Standard features include fast brain region lookup, point and click to select a region and view its full 3D extent, mark a stereotaxic coordinate and view all regions in a hierarchy. Built-in extensions are the CoCoMac plugin, which provides a spatial display of Macaque connectivity, and a service to transform stereotaxic coordinates to and from the INCF Waxholm space for the mouse. Three dimensional renderings of brain regions are available through a Matlab interface (local installation of Matlab required). The SBA is designed to be customizable. External users can create plugins, hosted on their own servers, to interactively attach images or data to spatial atlas locations. This fully web-based display engine for brain atlases and topologies allows client websites to show brain region related data in a 3D interactive context. Currently available atlases are: * Macaque: The Paxinos Rhesus Monkey atlas (2000) * Macaque: Various templates available through Caret, registered to F99 space: Felleman and Van Essen (1991), Lewis and Van Essen (2000), Regional Map from K��tter and Wanke (2005), Paxinos Rhesus Monkey (2000) * Macaque: The NeuroMaps Macaque atlas (2008) * Mouse: The INCF Waxholm Space for the mouse (2011). Previous versions available. * Mouse: The Allen Mouse Brain volumetric atlas (ABA07) * Human: The LPBA40 parcellation, registered to SRI24 space A variety of services are being developed around the templates contained in the Scalable Brain Atlas. For example, you can include thumbnails of brain regions in your own webpage. Other applications include: * Analyze atlas templates in Matlab * List all regions belonging to the given template * List of supported atlas templates * Find region by coordinate * Color-coded PNG (bitmap) or SVG (vector) image of a brain atlas slice * Region thumbnail in 2D (slice) or 3D (stack of slices) The Scalable Brain Atlas is created by Rembrandt Bakker and Gleb Bezgin, under supervision of Rolf K��tter in the NeuroPhysiology and -Informatics group of the Donders Institute, Radboud UMC Nijmegen.
Proper citation: Scalable Brain Atlas (RRID:SCR_006934) Copy
Catalog of internet resources relating to biological model organisms, and is part of the Biosciences area of the Virtual Library project. The main Model Organisms Library discussed in this website are: * E. coli (bacterium) * Yeasts (Saccharomyces cerevisiae, and other species) * Dictyostelium discoideum (slime mold) * Drosophila melanogaster (fruit fly) * Xenopus laevis (African clawed frog) Many aspects of biology are similar in most or all organisms, but it is frequently much easier to study particular aspects in particular organisms - for instance, genetics is easier in small organisms that breed quickly, and very difficult in humans! The most popular model organisms have strong advantages for experimental research, and become even more useful when other scientists have already worked on them, discovering techniques, genes and other useful information.
Proper citation: The WWW Virtual Library: Model Organisms (RRID:SCR_007007) Copy
http://www.nervenet.org/main/dictionary.html
A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.
Proper citation: Mouse Genome Databases (RRID:SCR_007147) Copy
http://medgen.ugent.be/rtprimerdb/
Database for primer and probe sequences used in real-time PCR assays employing popular chemistries (SYBR Green I, Taqman, Hybridization Probes, Molecular Beacon) to prevent time-consuming primer design and experimental optimization, and to introduce a certain level of uniformity and standardization among different laboratories. Researchers are encouraged to submit their validated primer and probe sequence, so that other users can benefit from their expertise. The database can be queried using the official gene name or symbol, Entrez or Ensembl Gene identifier, SNP identifier, or oligonucleotide sequence. Different options make it possible to restrict a query to a particular application (Gene Expression Quantification/Detection, DNA Copy Number Quantification/Detection, SNP Detection, Mutation Analysis, Fusion Gene Quantification/Detection, Chromatin immunoprecipitation (ChIP)), organism (Human, Mouse, Rat, and others) or detection chemistry.
Proper citation: RTPrimerDB- The Real-Time PCR and Probe Database (RRID:SCR_007106) Copy
http://www.nia.nih.gov/research/dab/aged-rodent-colonies-handbook
Colonies of barrier-raised, Specific Pathogen-Free (SPF) rodents under contractual arrangement with commercial vendors, specifically for use in aging research. They are not available for use as a general source of adult animals for unrelated areas of research. Animals from the NIA aged rodent colonies are available to investigators at academic and non-profit research institutions under the terms described on the Eligibility Criteria page. Orders must be submitted through the online rodent ordering system (ROS) (http://arc.niapublications.org/acb/stores/1/). Available strains: * Inbred Rats: Fischer 344 (F344), Brown Norway (BN) * Hybrid Rats: F344xBN F1 (F344BN); * Inbred Mice: BALB/cBy, CBA, C57BL/6, DBA/2 * Hybrid Mice: CB6F1 (BALB/cBy x C57BL/6), B6D2F1 (C57BL/6 x DBA/2) * Caloric Restricted Rats: F344 (males only), F344BN F1 (males only) * Caloric Restricted Mice: C57BL/6; B6D2F1 (males only)
Proper citation: NIA Aged Rodent Colonies (RRID:SCR_007317) Copy
http://www.nih.gov/science/models/mouse/deltagenlexicon/theresource.html
Repository of knockout mice that have been extensively characterized. For each mouse line, the contractors will provide not only the mouse line itself, but also detailed, objective data on the impact of the specific gene deletion on the mouse''s phenotype, which includes appearance, health, fitness, behavior, ability to reproduce, and radiological and microscopic data. Such comprehensive information on such a large group of mice has never been available to public sector researchers, and is expected to greatly accelerate efforts to explore gene functions in health and disease. This resource will give researchers unprecedented access to two private collections of knockout mice, providing valuable models for the study of human disease and laying the groundwork for a public, genome-wide library of knockout mice. The contracts also provide for the opportunity for NIH to obtain up to 1500 additional mouse lines and phenotypic data over the next three years, pending available funds. The new contracts provide NIH with irrevocable, perpetual, worldwide, royalty-free licenses to use and distribute to academic and non-profit researchers these lines of knockout mice. The mouse lines, which will be stored in the form of frozen embryos, frozen sperm and frozen embryonic stem (ES) cells, will be delivered to NIH-funded mouse repositories that supply mice to universities, medical schools and research labs all over the world. When researchers express interest in obtaining a certain knockout mouse line, the repositories will send them live mice, frozen embryos, sperm, and/or ES cells, so they can study the mice in their own labs. All data on the mice will be made available to researchers worldwide without restriction in publicly available databases on the Web. This resource will be available for a nominal fee which will be used to cover the cost of handling, shipping and replenishing the stock. Under the license agreements with Deltagen and Lexicon, researchers who receive the knockout mice lines through NIH are free to publish any results from research involving the line and also to seek patent or other intellectual property protection for any of the inventions or discoveries resulting from such research. List of Available Knockout Mice: http://www.informatics.jax.org/external/ko/
Proper citation: Deltagen and Lexicon Knockout Mice and Phenotypic Data Resource (RRID:SCR_007312) Copy
https://www.nitrc.org/projects/fmridatacenter/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 25, 2013 Public curated repository of peer reviewed fMRI studies and their underlying data. This Web-accessible database has data mining capabilities and the means to deliver requested data to the user (via Web, CD, or digital tape). Datasets available: 107 NOTE: The fMRIDC is down temporarily while it moves to a new home at UCLA. Check back again in late Jan 2013! The goal of the Center is to help speed the progress and the understanding of cognitive processes and the neural substrates that underlie them by: * Providing a publicly accessible repository of peer-reviewed fMRI studies. * Providing all data necessary to interpret, analyze, and replicate these fMRI studies. * Provide training for both the academic and professional communities. The Center will accept data from those researchers who are publishing fMRI imaging articles in peer-reviewed journals. The goal is to serve the entire fMRI community.
Proper citation: fMRI Data Center (RRID:SCR_007278) Copy
Curated protein-protein and genetic interaction repository of raw protein and genetic interactions from major model organism species, with data compiled through comprehensive curation efforts.
Proper citation: Biological General Repository for Interaction Datasets (BioGRID) (RRID:SCR_007393) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
http://jaxmice.jax.org/list/ra56.html
This Resource maintains and distributes mouse models for neural tube defects. Current Neural Tube Defect stains include: * Repository- Live: 129(Cg)-Foxg1
Proper citation: JAX Mice: Neural Tube Defects (RRID:SCR_007333) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.