Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Digital atlas of gene expression patterns in developing and adult mouse. Several reference atlases are also available through this site. Expression patterns are determined by non-radioactive in situ hybridization on serial tissue sections. Sections are available from several developmental ages: E10.5, E14.5 (whole embryos), E15.5, P7 and P56 (brains only). To retrieve expression patterns, search by gene name, site of expression, GenBank accession number or sequence homology. For viewing expression patterns, GenePaint.org features virtual microscope tool that enables zooming into images down to cellular resolution.
Proper citation: GenePaint (RRID:SCR_003015) Copy
https://code.google.com/p/gutentag/
An interactive, user-editable genetic sequence database tool, targeted at molecular biology research groups that can be browsed using tags. The tool is Web 2.0-flavoured, allowing users to do more than just retrieve information. Its focus on user-editability is supported by the use of tags (metadata) associated with genetic sequences. Several methods of retrieving stored data are available including tag-clouds, BLAST and keyword searches. Also, sequence tags related to HGNC gene names, conserved domains (CDD) and GO terms can be automatically generated given sequence data. The tool is constructed using the high-level Python web framework, Django, with a SQLite3 backend.
Proper citation: Gutentag (RRID:SCR_003051) Copy
http://bibiserv.techfak.uni-bielefeld.de/dialign/
Tool for multiple sequence alignment using various sources of external information that is particularly useful to detect local homologies in sequences with low overall similarity. While standard alignment methods rely on comparing single residues and imposing gap penalties, DIALIGN constructs pairwise and multiple alignments by comparing entire segments of the sequences. No gap penalty is used. This approach can be used for both global and local alignment, but it is particularly successful in situations where sequences share only local homologies. Several versions of DIALIGN are available online at GOBICS, http://dialign.gobics.de/
Proper citation: DIALIGN (RRID:SCR_003041) Copy
http://compbio.cs.sfu.ca/software-novelseq
Software pipeline to detect novel sequence insertions using high throughput paired-end whole genome sequencing data.
Proper citation: NovelSeq (RRID:SCR_003136) Copy
Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.
Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Main_Page
Laboratory portal, including software, web-based tools, databases and data sets, related to their research that focuses on the development and application of biophysical and bioinformatics methods aimed at understanding the structural and energetic origins of protein-protein, protein-nucleic acid, and protein-membrane interactions. Their work includes fundamental theoretical research, the development of software tools, and applications to problems of biological importance. In this regard they maintain an active collaborative computational and experimental research program on the molecular basis of cell-cell adhesion. Other problems of current interest include protein structure prediction, the organization of protein sequence/structure space, the prediction of protein function based on protein structure, the structural origins of specificity in protein-DNA interactions, RNA function and, more generally, the electrostatic properties of biological macromolecules.
Proper citation: Honig Lab (RRID:SCR_003410) Copy
http://compbio.dfci.harvard.edu/tgi/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.The goal of The Gene Index Project is to use the available Expressed Sequence Transcript (EST) and gene sequences, along with the reference genomes wherever available, to provide an inventory of likely genes and their variants and to annotate these with information regarding the functional roles played by these genes and their products. The promise of genome projects has been a complete catalog of genes in a wide range of organisms. While genome projects have been successful in providing reference genome sequences, the problem of finding genes and their variants in genomic sequence remains an ongoing challenge. TGI has created an inventory that contains genes and their variants together with description. In addition, this resource is attempting to use these catalogs to find links between genes and pathways in different species and to provide lists of features within completed genomes that can aid in the understanding of how gene expression is regulated. DATABASES *Eukaryotic Gene Orthologues (formerly known as TOGA - TIGR Orthologous Gene Alignment): Eukaryotic Gene Orthologues (EGO) at DFGI are generated by pair-wise comparison between the Tentative Consensus (TC) sequences that comprise the Dana Farber Gene Indices from individual organisms. The reciprocal pairs of the best match were clustered into individual groups and multiple sequence alignments were displayed for each group. *GeneChip Oncology Database (GCOD):Cancer gene expression database is a collection of publicly available microarray expression data on Affymetrix GeneChip Arrays related to human cancers. Currently only datasets with available raw data (Affymetrix .CEL files) are processed. All processed datasets were subjected to extensive manual curation, uniform processing and consistent quality control. You can browse the experiments in our collection, perform statistical analysis, and download processed data; or to search gene expression profiles using Entrez gene symbol, Unigene ID, or Affymetrix probeset ID. *Gene Indices: As of July 1, 2008, there are 111 publicly available gene indices. They are separated into 4 categories for better organization and easier access. Animal: 41, Plant: 45, Protist: 15, Fungal: 10 *Genomic Maps: Human, mouse, rat, chicken, drosophila melanogaster, zebrafish, mosquito, caenorhabditis elegans, Arabidopsis thaliana, rice, yeast, fission yeast Dana-Farber Cancer Institute (DFCI) Gene Indices Software Tools: *TGI Clustering tools (TGICL): a software system for fast clustering of large EST datasets. *GICL: this package contains the scripts and all the necessary pre-compiled binaries for 32bit Linux systems. *clview: an assembly file viewer. *SeqClean:a script for automated trimming and validation of ESTs or other DNA sequences by screening for various contaminants, low quality and low-complexity sequences. *cdbfasta/cdbyank: fast indexing/retrieval of fasta records from flat file databases. *DAS/XML Genomic Viewer The Genomic viewer borrows modules from http://www.biodas.org (lstein (at) cshl.org) & http://webreference.com.
Proper citation: Gene Index Project (RRID:SCR_002148) Copy
http://www.ncbi.nlm.nih.gov/HTGS/
Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.
Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy
http://bioafrica.mrc.ac.za/index.html
The BioAfrica HIV-1 Proteomics Resource is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. HIV Proteomics Resource contains information about each HIV-1 gene product in regard to expression, post-transcriptional / post-translational modifications, localization, functional activities, and potential interactions with viral and host macromolecules. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites.
Proper citation: BioAfrica HIV Informatics in Africa (RRID:SCR_002295) Copy
http://www.genoscope.cns.fr/spip/spip.php?lang=en
French national sequencing center with the following resources: * Sequencing ** Genoscope Projects * Environmental genomics ** Microbial diversity in wastewater ** Metabolic genomics * Bioinformatics ** Atelier for comparative genomics ** Computational Systems Biology ** Servers resources *** GGB for Generic Genome Browser: graphic interface for various databases (sequence, annotation, syntenies...) for a given organism. *** MaGe for Magnifying Microbial Genomes: annotation system for microbial genomes.
Proper citation: Genoscope (RRID:SCR_002172) Copy
Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.
Proper citation: SAMTOOLS (RRID:SCR_002105) Copy
https://ftp.ncbi.nlm.nih.gov/pub/mhc/mhc/Final%20Archive/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019 Database was open, publicly accessible platform for DNA and clinical data related to human Major Histocompatibility Complex (MHC). Data from IHWG workshops were provided as well., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: dbMHC (RRID:SCR_002302) Copy
Maintains and provides archival, retrieval and analytical resources for biological information. Central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: DDBJ Omics Archive and BioProject. DOR is archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides organizational framework to access metadata about research projects and data from projects that are deposited into different databases.
Proper citation: DNA DataBank of Japan (DDBJ) (RRID:SCR_002359) Copy
http://www.ncbi.nlm.nih.gov/genome
Database that organizes information on genomes including sequences, maps, chromosomes, assemblies, and annotations in six major organism groups: Archaea, Bacteria, Eukaryotes, Viruses, Viroids, and Plasmids. Genomes of over 1,200 organisms can be found in this database, representing both completely sequenced organisms and those for which sequencing is in progress. Users can browse by organism, and view genome maps and protein clusters. Links to other prokaryotic and archaeal genome projects, as well as BLAST tools and access to the rest of the NCBI online resources are available.
Proper citation: NCBI Genome (RRID:SCR_002474) Copy
http://sourceforge.net/projects/bio-rainbow/
Software developed to provide an ultra-fast and memory-efficient solution to clustering and assembling short reads produced by RAD-seq.
Proper citation: Rainbow (RRID:SCR_002724) Copy
Database that collects, integrates and links all relevant primary information from the GABI plant genome research projects and makes them accessible via internet. Its purpose is to support plant genome research in Germany, to yield information about commercial important plant genomes, and to establish a scientific network within plant genomic research.
GreenCards is the main interface for text based retrieval of sequence, SNP, mapping data etc. Sharing and interchange of data among collaborating research groups, industry and the patent- and licensing agency are facilitated.
* GreenCards: Text based search for sequence, mapping, SNP data etc. * Maps: Visualization of genetic or physical maps. * BLAST: Secure BLAST search against different public databases or non-public sequence data stored in GabiPD. * Proteomics: View interactive 2D-gels and view or download information for identified protein spots. Registered users can submit data via secure file upload.
Proper citation: Gabi Primary Database (RRID:SCR_002755) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 2nd, 2023. Sequence composition based classifier for metagenomic sequences. It works by capturing signatures of each sequence based on the sequence composition. Each sequence is modeled as a walk in a de Bruijn graph with underlying Markov chain properties. ClaMS captures stationary parameters of the underlying Markov chain as well as structural parameters of the underlying de Bruijn graph to form this signature. In practice, for each sequence to binned, such a signature is computed and matched to similar signatures computed for the training sets. The best match that also qualifies the normalized distance cut-off wins. In the case that the best match does not qualify this cut-off, the sequence remains un-binned.
Proper citation: Classifier for Metagenomic Sequences (RRID:SCR_004929) Copy
https://github.com/tk2/RetroSeq
A tool for discovery and genotyping of transposable element variants (TEVs) (also known as mobile element insertions) from next-gen sequencing reads aligned to a reference genome in BAM format. The goal is to call TEVs that are not present in the reference genome but present in the sample that has been sequenced. It should be noted that RetroSeq can be used to locate any class of viral insertion in any species where whole-genome sequencing data with a suitable reference genome is available. RetroSeq is a two phase process, the first being the read pair discovery phase where discorandant mate pairs are detected and assigned to a TE class (Alu, SINE, LINE, etc.) by using either the annotated TE elements in the reference and/or aligned with Exonerate to the supplied library of viral sequences.
Proper citation: RetroSeq (RRID:SCR_005133) Copy
http://seqant.genetics.emory.edu/
A free web service and open source software package that performs rapid, automated annotation of DNA sequence variants (single base mutations, insertions, deletions) discovered with any sequencing platform. Variant sites are characterized with respect to their functional type (Silent, Replacement, 5' UTR, 3' UTR, Intronic, Intergenic), whether they have been previously submitted to dbSNP, and their evolutionary conservation. Annotated variants can be viewed directly on the web browser, downloaded in a tab delimited text file, or directly uploaded in a Browser Extended Data (BED) format to the UCSC genome browser. SeqAnt further identifies all loci harboring two or more coding sequence variants that help investigators identify potential compound heterozygous loci within exome sequencing experiments. In total, SeqAnt resolves a significant bottleneck by allowing an investigator to rapidly prioritize the functional analysis of those variants of interest.
Proper citation: SeqAnt (RRID:SCR_005186) Copy
http://compbio.cs.brown.edu/projects/gasv/
Software tool combining both paired read and read depth signals into probabilistic model which can analyze multiple alignments of reads. Used to find structural variation in both normal and cancer genomes using data from variety of next-generation sequencing platforms. Used to predict structural variants directly from aligned reads in SAM/BAM format.Combines read depth information along with discordant paired read mappings into single probabilistic model two common signals of structural variation. When multiple alignments of read are given, GASVPro utilizes Markov Chain Monte Carlo procedure to sample over the space of possible alignments.
Proper citation: GASVPro (RRID:SCR_005259) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.