Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 134 results
Snippet view Table view Download 134 Result(s)
Click the to add this resource to a Collection

http://www.dd-database.org/

Database of bibliographic details of over 9,000 references published between 1951 and the present day, and includes abstracts, journal articles, book chapters and books replacing the two former separate websites for Ian Stolerman's drug discrimination database and Dick Meisch's drug self-administration database. Lists of standardized keywords are used to index the citations. Most of the keywords are generic drug names but they also include methodological terms, species studied and drug classes. This index makes it possible to selectively retrieve references according to the drugs used as the training stimuli, drugs used as test stimuli, drugs used as pretreatments, species, etc. by entering your own terms or by using our comprehensive lists of search terms. Drug Discrimination Drug Discrimination is widely recognized as one of the major methods for studying the behavioral and neuropharmacological effects of drugs and plays an important role in drug discovery and investigations of drug abuse. In Drug Discrimination studies, effects of drugs serve as discriminative stimuli that indicate how reinforcers (e.g. food pellets) can be obtained. For example, animals can be trained to press one of two levers to obtain food after receiving injections of a drug, and to press the other lever to obtain food after injections of the vehicle. After the discrimination has been learned, the animal starts pressing the appropriate lever according to whether it has received the training drug or vehicle; accuracy is very good in most experiments (90 or more correct). Discriminative stimulus effects of drugs are readily distinguished from the effects of food alone by collecting data in brief test sessions where responses are not differentially reinforced. Thus, trained subjects can be used to determine whether test substances are identified as like or unlike the drug used for training. Drug Self-administration Drug Self-administration methodology is central to the experimental analysis of drug abuse and dependence (addiction). It constitutes a key technique in numerous investigations of drug intake and its neurobiological basis and has even been described by some as the gold standard among methods in the area. Self-administration occurs when, after a behavioral act or chain of acts, a feedback loop results in the introduction of a drug or drugs into a human or infra-human subject. The drug is usually conceptualized as serving the role of a positive reinforcer within a framework of operant conditioning. For example, animals can be given the opportunity to press a lever to obtain an infusion of a drug through a chronically-indwelling venous catheter. If the available dose of the drug serves as a positive reinforcer then the rate of lever-pressing will increase and a sustained pattern of responding at a high rate may develop. Reinforcing effects of drugs are distinguishable from other actions such as increases in general activity by means of one or more control procedures. Trained subjects can be used to investigate the behavioral and neuropharmacological basis of drug-taking and drug-seeking behaviors and the reinstatement of these behaviors in subjects with a previous history of drug intake (relapse models). Other applications include evaluating novel compounds for liability to produce abuse and dependence and for their value in the treatment of drug dependence and addiction. The bibliography is updated about four times per year.

Proper citation: Comprehensive Drug Self-administration and Discrimination Bibliographic Databases (RRID:SCR_000707) Copy   


  • RRID:SCR_001436

    This resource has 1+ mentions.

https://medicine.yale.edu/keck/nida/yped/

Open source system for storage, retrieval, and integrated analysis of large amounts of data from high throughput proteomic technologies. YPED currently handles LCMS, MudPIT, ICAT, iTRAQ, SILAC, 2D Gel and DIGE. The repository contains data sets which have been released for public viewing and downloading by the responsible Primary Investigators. It includes proteomic data generated by the Yale NIDA Neuroproteomics Center (http://medicine.yale.edu/keck/nida/index.aspx). Sample descriptions are compatible with the evolving MIAPE standards.

Proper citation: YPED (RRID:SCR_001436) Copy   


  • RRID:SCR_016030

https://github.com/ABCD-STUDY/ABCDreport

Software application as a simple system to review study progress. Used in ABCD study.

Proper citation: ABCDreport (RRID:SCR_016030) Copy   


  • RRID:SCR_016012

https://github.com/ABCD-STUDY/FIONASITE

Software for uploading data to FIONA and capturing MR images and k-space data from medical image systems. It provides a web-interface to automate the data review (image viewer), integrate with the centralized electronic data record for assigning anonymized id's, and forward the data to the central archive.

Proper citation: FIONASITE (RRID:SCR_016012) Copy   


https://github.com/ABCD-STUDY/Minimally-Processed-Image-Sharing

Software to share ABCD minimally processed data. It uploads minimally-processed MRI data to the NDA ( Non-Disclosure Agreement) ABCD (Adolescent Brain Cognitive Development) repository.

Proper citation: Minimally-Processed-Image-Sharing (RRID:SCR_016016) Copy   


  • RRID:SCR_016011

    This resource has 10+ mentions.

https://github.com/ABCD-STUDY/enroll

Software which provides a framework for the secure storage of Personal Identifyable Information (PII) for a multi-site longitudinal project centrally. Used in Adolescent Brain Cognitive Development (ABCD) Study.

Proper citation: enroll (RRID:SCR_016011) Copy   


  • RRID:SCR_016023

https://github.com/ABCD-STUDY/tick-tock

Software for research study observation that visualizes study related events per day. Any event generating function sends a 'tick' event to this application which will be visible on this applications web-interface.

Proper citation: tick-tock (RRID:SCR_016023) Copy   


https://github.com/ABCD-STUDY/FIONA-protocol-compliance

Software that contains multiple sequential lines of MATLAB commands and function calls for numerical computing for ABCD study protocol compliance.

Proper citation: FIONA-protocol-compliance (RRID:SCR_016027) Copy   


https://github.com/ABCD-STUDY/Fast-Track-Image-Sharing

Software for sharing the ABCD (Adolescent Brain Cognitive Development) study data on the National Data Archive (NDA).

Proper citation: Fast-Track-Image-Sharing (RRID:SCR_016021) Copy   


  • RRID:SCR_016020

https://github.com/ABCD-STUDY/eprime-data-clean

Software to convert E-Prime (software tool for psychology computerized experiment design, data collection, and analysis) generated files to CSV files without errors during conversion. The ABCD project is using E-Prime to run behavioral tests.

Proper citation: eprime-data-clean (RRID:SCR_016020) Copy   


  • RRID:SCR_016007

    This resource has 10+ mentions.

https://github.com/ABCD-STUDY/geocoding

Software that uses a geo-location database to determine individuals' residential environment in Adolescent Brain Cognitive Development (ABCD) study. It performs queries given individuals' residential history in longitude and latitude.

Proper citation: geocoding (RRID:SCR_016007) Copy   


http://mimi.ncibi.org/MimiWeb/main-page.jsp

MiMi Web gives you an easy to use interface to a rich NCIBI data repository for conducting your systems biology analyses. This repository includes the MiMI database, PubMed resources updated nightly, and text mined from biomedical research literature. The MiMI database comprehensively includes protein interaction information that has been integrated and merged from diverse protein interaction databases and other biological sources. With MiMI, you get one point of entry for querying, exploring, and analyzing all these data. MiMI provides access to the knowledge and data merged and integrated from numerous protein interactions databases and augments this information from many other biological sources. MiMI merges data from these sources with deep integration into its single database with one point of entry for querying, exploring, and analyzing all these data. MiMI allows you to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI displays results of your queries in easy-to-browse interfaces and provides you with workspaces to explore and analyze the results. Among these workspaces is an interactive network of protein-protein interactions displayed in Cytoscape and accessed through MiMI via a MiMI Cytoscape plug-in. MiMI gives you access to more information than you can get from any one protein interaction source such as: * Vetted data on genes, attributes, interactions, literature citations, compounds, and annotated text extracts through natural language processing (NLP) * Linkouts to integrated NCIBI tools to: analyze overrepresented MeSH terms for genes of interest, read additional NLP-mined text passages, and explore interactive graphics of networks of interactions * Linkouts to PubMed and NCIBI's MiSearch interface to PubMed for better relevance rankings * Querying by keywords, genes, lists or interactions * Provenance tracking * Quick views of missing information across databases. Data Sources include: BIND, BioGRID, CCSB at Harvard, cPath, DIP, GO (Gene Ontology), HPRD, IntAct, InterPro, IPI, KEGG, Max Delbreuck Center, MiBLAST, NCBI Gene, Organelle DB, OrthoMCL DB, PFam, ProtoNet, PubMed, PubMed NLP Mining, Reactome, MINT, and Finley Lab. The data integration service is supplied under the conditions of the original data sources and the specific terms of use for MiMI. Access to this website is provided free of charge. The MiMI data is queryable through a web services api. The MiMI data is available in PSI-MITAB Format. These files represent a subset of the data available in MiMI. Only UniProt and RefSeq identifiers are included for each interactor, pathways and metabolomics data is not included, and provenance is not included for each interaction. If you need access to the full MiMI dataset please send an email to mimi-help (at) umich.edu.

Proper citation: Michigan Molecular Interactions (RRID:SCR_003521) Copy   


  • RRID:SCR_003424

    This resource has 1+ mentions.

http://portal.ncibi.org/gateway/mimiplugin.html

The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.

Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy   


  • RRID:SCR_003447

http://www.minituba.org

miniTUBA is a web-based modeling system that allows clinical and biomedical researchers to perform complex medical/clinical inference and prediction using dynamic Bayesian network analysis with temporal datasets. The software allows users to choose different analysis parameters (e.g. Markov lags and prior topology), and continuously update their data and refine their results. miniTUBA can make temporal predictions to suggest interventions based on an automated learning process pipeline using all data provided. Preliminary tests using synthetic data and laboratory research data indicate that miniTUBA accurately identifies regulatory network structures from temporal data. miniTUBA represents in a network view possible influences that occur between time varying variables in your dataset. For these networks of influence, miniTUBA predicts time courses of disease progression or response to therapies. minTUBA offers a probabilistic framework that is suitable for medical inference in datasets that are noisy. It conducts simulations and learning processes for predictive outcomes. The DBN analysis conducted by miniTUBA describes from variables that you specify how multiple measures at different time points in various variables influence each other. The DBN analysis then finds the probability of the model that best fits the data. A DBN analysis runs every combination of all the data; it examines a large space of possible relationships between variables, including linear, non-linear, and multi-state relationships; and it creates chains of causation, suggesting a sequence of events required to produce a particular outcome. Such chains of causation networks - are difficult to extract using other machine learning techniques. DBN then scores the resulting networks and ranks them in terms of how much structured information they contain compared to all possible models of the data. Models that fit well have higher scores. Output of a miniTUBA analysis provides the ten top-scoring networks of interacting influences that may be predictive of both disease progression and the impact of clinical interventions and probability tables for interpreting results. The DBN analysis that miniTUBA provides is especially good for biomedical experiments or clinical studies in which you collect data different time intervals. Applications of miniTUBA to biomedical problems include analyses of biomarkers and clinical datasets and other cases described on the miniTUBA website. To run a DBN with miniTUBA, you can set a number of parameters and constrain results by modifying structural priors (i.e. forcing or forbidding certain connections so that direction of influence reflects actual biological relationships). You can specify how to group variables into bins for analysis (called discretizing) and set the DBN execution time. You can also set and re-set the time lag to use in the analysis between the start of an event and the observation of its effect, and you can select to analyze only particular subsets of variables.

Proper citation: miniTUBA (RRID:SCR_003447) Copy   


http://learn.genetics.utah.edu/content/addiction/

A physiologic and molecular look at drug addiction involving many factors including: basic neurobiology, a scientific examination of drug action in the brain, the role of genetics in addiction, and ethical considerations. Designed to be used by students, teachers and members of the public, the materials meet selected US education standards for science and health. Drug addiction is a chronic disease characterized by changes in the brain which result in a compulsive desire to use a drug. A combination of many factors including genetics, environment and behavior influence a person's addiction risk, making it an incredibly complicated disease. The new science of addiction considers all of these factors - from biology to family - to unravel the complexities of the addicted brain. * Natural Reward Pathways Exist in the Brain: The reward pathway is responsible for driving our feelings of motivation, reward and behavior. * Drugs Alter the Brain's Reward Pathway: Drugs work over time to change the reward pathway and affect the entire brain, resulting in addiction. * Genetics Is An Important Factor In Addiction: Genetic susceptibility to addiction is the result of the interaction of many genes. * Timing and Circumstances Influence Addiction: If you use drugs when you are an adolescent, you are more likely to develop lifetime addiction. An individual's social environment also influences addiction risk. * Challenges and Issues in Addiction: Addiction impacts society with many ethical, legal and social issues.

Proper citation: New Science of Addiction: Genetics and the Brain (RRID:SCR_002770) Copy   


  • RRID:SCR_002767

    This resource has 1+ mentions.

http://www.macaque.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.

Proper citation: Macaque.org (RRID:SCR_002767) Copy   


http://www.icpsr.umich.edu/

Data archive of more than 500,000 files of research in the social sciences, hosting 16 specialized collections of data in education, aging, criminal justice, substance abuse, terrorism, and other fields. ICPSR comprises a consortium of about 700 academic institutions and research organizations providing training in data access, curation, and methods of analysis for the social science research community. ICPSR welcomes and encourages deposits of digital data. ICPSR's educational activities include the Summer Program in Quantitative Methods of Social Research external link, a comprehensive curriculum of intensive courses in research design, statistics, data analysis, and social methodology. ICPSR also leads several initiatives that encourage use of data in teaching, particularly for undergraduate instruction. ICPSR-sponsored research focuses on the emerging challenges of digital curation and data science. ICPSR researchers also examine substantive issues related to our collections, with an emphasis on historical demography and the environment.

Proper citation: Inter-university Consortium for Political and Social Research (ICPSR) (RRID:SCR_003194) Copy   


  • RRID:SCR_003212

    This resource has 100+ mentions.

http://phenome.jax.org/

Database enables integration of genomic and phenomic data by providing access to primary experimental data, data collection protocols and analysis tools. Data represent behavioral, morphological and physiological disease-related characteristics in naive mice and those exposed to drugs, environmental agents or other treatments. Collaborative standardized collection of measured data on laboratory mouse strains to characterize them in order to facilitate translational discoveries and to assist in selection of strains for experimental studies. Includes baseline phenotype data sets as well as studies of drug, diet, disease and aging effect., protocols, projects and publications, and SNP, variation and gene expression studies. Provides tools for online analysis. Data sets are voluntarily contributed by researchers from variety of institutions and settings, or retrieved by MPD staff from open public sources. MPD has three major types of strain-centric data sets: phenotype strain surveys, SNP and variation data, and gene expression strain surveys. MPD collects data on classical inbred strains as well as any fixed-genotype strains and derivatives that are openly acquirable by the research community. New panels include Collaborative Cross (CC) lines and Diversity Outbred (DO) populations. Phenotype data include measurements of behavior, hematology, bone mineral density, cholesterol levels, endocrine function, aging processes, addiction, neurosensory functions, and other biomedically relevant areas. Genotype data are primarily in the form of single-nucleotide polymorphisms (SNPs). MPD curates data into a common framework by standardizing mouse strain nomenclature, standardizing units (SI where feasible), evaluating data (completeness, statistical power, quality), categorizing phenotype data and linking to ontologies, conforming to internal style guides for titles, tags, and descriptions, and creating comprehensive protocol documentation including environmental parameters of the test animals. These elements are critical for experimental reproducibility.

Proper citation: Mouse Phenome Database (MPD) (RRID:SCR_003212) Copy   


https://www.ohsu.edu/custom/library/digital-collections/projectionmap

Data set of thalamo-centric mesoscopic projection maps to the cortex and striatum. The maps are established through two-color, viral (rAAV)-based tracing images and high throughout imaging.

Proper citation: Mouse Thalamic Projectome Dataset (RRID:SCR_015702) Copy   


  • RRID:SCR_015769

    This resource has 500+ mentions.

https://abcdstudy.org

Long-term study of brain development and child health in the United States. The study tracks subjects' biological and behavioral development through adolescence into young adulthood to determine how childhood experiences (such as sports, videogames, social media, unhealthy sleep patterns, and smoking) interact with each other and with a child’s changing biology to affect brain development and social, behavioral, academic, health, and other outcomes.

Proper citation: ABCD Study (RRID:SCR_015769) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X