Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://bioinfo.mbi.ucla.edu/ASAP/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. Database to access and mine alternative splicing information coming from genomics and proteomics based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. They developed an automated method for discovering human tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs), which involves classifying human EST libraries according to tissue categories and Bayesian statistical analysis. They use the UniGene clusters of human Expressed Sequence Tags (ESTs) to identify splices. The UniGene EST's are clustered so that a single cluster roughly corresponds to a gene (or at least a part of a gene). A single EST represents a portion of a processed (already spliced) mRNA. A given cluster contains many ESTs, each representing an outcome of a series of splicing events. The ESTs in UniGene contain the different mRNA isoforms transcribed from an alternatively spliced gene. They are not predicting alternative splicing, but locating it based on EST analysis. The discovered splices are further analyzed to determine alternative splicing events. They have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with 2.1 million human mRNA and EST sequences, they mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. After constructing a tissue list of 46 human tissues with 2 million human ESTs, they generated a database of novel human alternative splices that is four times larger than our previous report, and used Bayesian statistics to compare the relative abundance of every pair of alternative splices in these tissues. Using several statistical criteria for tissue specificity, they have identified 667 tissue-specific alternative splicing relationships and analyzed their distribution in human tissues. They have validated our results by comparison with independent studies. This genome-wide analysis of tissue specificity of alternative splicing will provide a useful resource to study the tissue-specific functions of transcripts and the association of tissue-specific variants with human diseases.
Proper citation: ASAP: the Alternative Splicing Annotation Project (RRID:SCR_003415) Copy
https://scicrunch.org/scicrunch/data/source/nlx_154697-4/search?q=*
Virtual database indexing brain region gene expression data from mice from: Gene Expression Nervous System Atlas (GENSAT), Allen Mouse Brain Atlas, and Mouse Genome Institute (MGI).
Proper citation: Integrated Brain Gene Expression (RRID:SCR_004197) Copy
http://swissregulon.unibas.ch/fcgi/sr/swissregulon
A database of genome-wide annotations of regulatory sites. The predictions are based on Bayesian probabilistic analysis of a combination of input information including: * Experimentally determined binding sites reported in the literature. * Known sequence-specificities of transcription factors. * ChIP-chip and ChIP-seq data. * Alignments of orthologous non-coding regions. Predictions were made using the PhyloGibbs, MotEvo, IRUS and ISMARA algorithms developed in their group, depending on the data available for each organism. Annotations can be viewed in a Gbrowse genome browser and can also be downloaded in flat file format.
Proper citation: SwissRegulon (RRID:SCR_005333) Copy
http://wukong.tongji.edu.cn/pepid
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. A database to store the curated epigenetic data from studies of prostate cancer retrieved by literature mining. The Prostate Epigenetic Database (PEpiD) is meant as a resource for finding previous studies of prostate cancer in humans, mice and rats. Searches can be targeted through the categories of DNA methylation, histone modification, and microRNA.
Proper citation: PEpiD (RRID:SCR_000235) Copy
http://gpcr.biocomp.unibo.it/esldb
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 22,2022. database of protein subcellular localization annotation for eukaryotic organisms. It contains experimental annotations derived from primary protein databases, homology based annotations and computational predictions.
Proper citation: eSLDB - eukaryotic Subcellular Localization database (RRID:SCR_000052) Copy
http://lifespandb.sageweb.org/
Database that collects published lifespan data across multiple species. The entire database is available for download in various formats including XML, YAML and CSV.
Proper citation: Lifespan Observations Database (RRID:SCR_001609) Copy
A publicly accessible knowledgebase about protein-protein, protein-lipid, protein-small molecules, ligand-receptor interactions, receptor-cell type information, transcriptional regulatory and signal transduction modules relevant to inflammation, cell migration and tumourigenesis. It integrates in-house curated information from the literature, biochemical experiments, functional assays and in vivo studies, with publicly available information from multiple and diverse sources across human, rat, mouse, fly, worm and yeast. The knowledgebase allowing users to search and to dynamically generate visual representations of protein-protein interactions and transcriptional regulatory networks. Signalling and transcriptional modules can also be displayed singly or in combination. This allow users to identify important "cross-talks" between signalling modules via connections with key components or "hubs". The knowledgebase will facilitate a "systems-wide" understanding across many protein, signalling and transcriptional regulatory networks triggered by multiple environmental cues, and also serve as a platform for future efforts to computationally and mathematically model the system behavior of inflammatory processes and tumourigenesis.
Proper citation: pSTIING (RRID:SCR_002045) Copy
Database to retrieve and compare gene expression patterns between animal species. Bgee first maps heterogeneous expression data (currently bulk RNA-Seq, scRNA-Seq, Affymetrix, in situ hybridization, and EST data) to anatomy and development of different species. Bgee is based exclusively on curated healthy wild-type expression data (e.g., no gene knock-out, no treatment, no disease), to provide a comparable reference of gene expression.
Proper citation: Bgee: dataBase for Gene Expression Evolution (RRID:SCR_002028) Copy
A database of brain neuroanatomic volumetric observations spanning various species, diagnoses, and structures for both individual and group results. A major thrust effort is to enable electronic access to the results that exist in the published literature. Currently, there is quite limited electronic or searchable methods for the data observations that are contained in publications. This effort will facilitate the dissemination of volumetric observations by making a more complete corpus of volumetric observations findable to the neuroscience researcher. This also enhances the ability to perform comparative and integrative studies, as well as metaanalysis. Extensions that permit pre-published, non-published and other representation are planned, again to facilitate comparative analyses. Design strategy: The principle organizing data structure is the "publication". Publications report on "groups" of subjects. These groups have "demographic" information as well as "volume" information for the group as a whole. Groups are comprised of "individuals", which also have demographic and volume information for each of the individuals. The finest-grained data structure is the "individual volume record" which contains a volume observation, the units for the observation, and a pointer to the demographic record for individual upon which the observation is derived. A collection of individual volumes can be grouped into a "group volume" observation; the group can be demographically characterized by the distribution of individual demographic observations for the members of the group.
Proper citation: Internet Brain Volume Database (RRID:SCR_002060) Copy
A database that focuses on experimentally verified protein-protein interactions mined from the scientific literature by expert curators. The curated data can be analyzed in the context of the high throughput data and viewed graphically with the MINT Viewer. This collection of molecular interaction databases can be used to search for, analyze and graphically display molecular interaction networks and pathways from a wide variety of species. MINT is comprised of separate database components. HomoMINT, is an inferred human protein interatction database. Domino, is database of domain peptide interactions. VirusMINT explores the interactions of viral proteins with human proteins. The MINT connect viewer allows you to enter a list of proteins (e.g. proteins in a pathway) to retrieve, display and download a network with all the interactions connecting them.
Proper citation: MINT (RRID:SCR_001523) Copy
http://proteomics.ucsd.edu/Software/NeuroPedia/index.html
A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.
Proper citation: NeuroPedia (RRID:SCR_001551) Copy
Collection of data of protein sequence and functional information. Resource for protein sequence and annotation data. Consortium for preservation of the UniProt databases: UniProt Knowledgebase (UniProtKB), UniProt Reference Clusters (UniRef), and UniProt Archive (UniParc), UniProt Proteomes. Collaboration between European Bioinformatics Institute (EMBL-EBI), SIB Swiss Institute of Bioinformatics and Protein Information Resource. Swiss-Prot is a curated subset of UniProtKB.
Proper citation: UniProt (RRID:SCR_002380) Copy
http://www.ncbi.nlm.nih.gov/ieb/research/acembly/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 29, 2016. AceView offers an integrated view of the human, nematode and Arabidopsis genes reconstructed by co-alignment of all publicly available mRNAs and ESTs on the genome sequence. Our goals are to offer a reliable up-to-date resource on the genes and their functions and to stimulate further validating experiments at the bench. AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals' transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated. Our goals are to offer an up-to-date resource on the genes, in the hope to stimulate further experiments at the bench, or to help medical research. AceView can be queried by meaningful words or groups of words as well as by most standard identifiers, such as gene names, Entrez Gene ID, UniGene ID, GenBank accessions.
Proper citation: AceView (RRID:SCR_002277) Copy
http://edas2.bioinf.fbb.msu.ru/
Databases of alternatively spliced genes with data on the alignment of proteins, mRNAs, and EST. It contains information on all exons and introns observed, as well as elementary alternatives formed from them. The database makes it possible to filter the output data by changing the cut-off threshold by the significance level. It contains splicing information on human, mouse, dog (not yet functional) and rat (not yet functional). For each database, users can search by keyword or by overall gene expression. They can also view genes based on chromosomal arrangement or other position in genome (exon, intron, acceptor site, donor site), functionality, position, conservation, and EST coverage. Also offered is an online Fisher test.
Proper citation: EDAS - EST-Derived Alternative Splicing Database (RRID:SCR_002449) Copy
An integrative interaction database that integrates different types of functional interactions from heterogeneous interaction data resources. Physical protein interactions, metabolic and signaling reactions and gene regulatory interactions are integrated in a seamless functional association network that simultaneously describes multiple functional aspects of genes, proteins, complexes, metabolites, etc. With human, yeast and mouse complex functional interactions, it currently constitutes the most comprehensive publicly available interaction repository for these species. Different ways of utilizing these integrated interaction data, in particular with tools for visualization, analysis and interpretation of high-throughput expression data in the light of functional interactions and biological pathways is offered.
Proper citation: ConsensusPathDB (RRID:SCR_002231) Copy
http://the_brain.bwh.harvard.edu/uniprobe/
Database that hosts experimental data from universal protein binding microarray (PBM) experiments (Berger et al., 2006) and their accompanying statistical analyses from prokaryotic and eukaryotic organisms, malarial parasites, yeast, worms, mouse, and human. It provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ("words") of length k ("k-mers"), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. The database's web tools include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences.
Proper citation: UniPROBE (RRID:SCR_005803) Copy
http://edwardslab.bmcb.georgetown.edu/downloads/
The Peptide Sequence Database contains putative peptide sequences from human, mouse, rat, and zebrafish. Compressed to eliminate redundancy, these are about 40 fold smaller than a brute force enumeration. Current and old releases are available for download. Each species'' peptide sequence database comprises peptide sequence data from releveant species specific UniGene and IPI clusters, plus all sequences from their consituent EST, mRNA and protein sequence databases, namely RefSeq proteins and mRNAs, UniProt''s SwissProt and TrEMBL, GenBank mRNA, ESTs, and high-throughput cDNAs, HInv-DB, VEGA, EMBL, IPI protein sequences, plus the enumeration of all combinations of UniProt sequence variants, Met loss PTM, and signal peptide cleavages. The README file contains some information about the non amino-acid symbols O (digest site corresponding to a protein N- or C-terminus) and J (no digest sequence join) used in these peptide sequence databases and information about how to configure various search engines to use them. Some search engines handle (very) long sequences badly and in some cases must be patched to use these peptide sequence databases. All search engines supported by the PepArML meta-search engine can (or can be patched to) successfully search these peptide sequence databases.
Proper citation: Peptide Sequence Database (RRID:SCR_005764) Copy
Database of the international consortium working together to mutate all protein-coding genes in the mouse using a combination of gene trapping and gene targeting in C57BL/6 mouse embryonic stem (ES) cells. Detailed information on targeted genes is available. The IKMC includes the following programs: * Knockout Mouse Project (KOMP) (USA) ** CSD, a collaborative team at the Children''''s Hospital Oakland Research Institute (CHORI), the Wellcome Trust Sanger Institute and the University of California at Davis School of Veterinary Medicine , led by Pieter deJong, Ph.D., CHORI, along with K. C. Kent Lloyd, D.V.M., Ph.D., UC Davis; and Allan Bradley, Ph.D. FRS, and William Skarnes, Ph.D., at the Wellcome Trust Sanger Institute. ** Regeneron, a team at the VelociGene division of Regeneron Pharmaceuticals, Inc., led by David Valenzuela, Ph.D. and George D. Yancopoulos, M.D., Ph.D. * European Conditional Mouse Mutagenesis Program (EUCOMM) (Europe) * North American Conditional Mouse Mutagenesis Project (NorCOMM) (Canada) * Texas A&M Institute for Genomic Medicine (TIGM) (USA) Products (vectors, mice, ES cell lines) may be ordered from the above programs.
Proper citation: International Knockout Mouse Consortium (RRID:SCR_005574) Copy
Database and discovery platform containing publicly available collections of genes and variants associated to human diseases. Integrates data from curated repositories, GWAS catalogues, animal models and scientific literature.
Proper citation: DisGeNET (RRID:SCR_006178) Copy
http://www.ncbi.nlm.nih.gov/CCDS/
Database (anonymous FTP) resulting from a collaborative effort to identify a core set of human and mouse protein coding regions that are consistently annotated and of high quality. The long term goal is to support convergence towards a standard set of gene annotations. Collaborators are EBI, NCBI, UCSC, WTSI and the initial results are also available from the participants'''' genome browser Web sites. In addition, CCDS identifiers are indicated on the relevant NCBI RefSeq and Entrez Gene records and in Map Viewer displays of RNA (RefSeq) and Gene annotations on the reference assembly.
Proper citation: Consensus CDS (RRID:SCR_006729) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.