Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 172 results
Snippet view Table view Download 172 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_008915

    This resource has 10+ mentions.

http://www.nsgportal.org/

Web portal that allows free access to supercomputing resources for large scale modeling and data processing. Portal facilitates access and use of National Science Foundation (NSF) High Performance Computing (HPC) resources by neuroscientists.

Proper citation: Neuroscience Gateway (RRID:SCR_008915) Copy   


https://www.bci2000.org/

BCI2000 is a general-purpose system for brain-computer interface (BCI) and adaptive neurotechnology research. It can also be used for data acquisition, stimulus presentation, and brain monitoring applications. The mission of the BCI2000 project is to facilitate research and applications in the areas described. Their vision is that BCI2000 will become a widely used software tool for diverse areas of real-time biosignal processing. In order to achieve this vision, BCI2000 system is available for free for non-profit research and educational purposes. BCI2000 supports a variety of data acquisition systems, brain signals, and study/feedback paradigms. During operation, BCI2000 stores data in a common format (BCI2000 native or GDF), along with all relevant event markers and information about system configuration. BCI2000 also includes several tools for data import/conversion (e.g., a routine to load BCI2000 data files directly into Matlab) and export facilities into ASCII. BCI2000 also facilitates interactions with other software. For example, Matlab scripts can be executed in real-time from within BCI2000, or BCI2000 filters can be compiled to execute as stand-alone programs. Furthermore, a simple network-based interface allows for interactions with external programs written in any programming language. For example, a robotic arm application that is external to BCI2000 may be controlled in real time based on brain signals processed by BCI2000, or BCI2000 may use and store along with brain signals behavioral-based inputs such as eye-tracker coordinates. Because it is based on a framework whose services can support any BCI implementation, the use of BCI2000 provides maximum benefit to comprehensive research programs that operate multiple BCI2000 installations to collect data for a variety of studies. The most important benefits of the system in such situations are: - A Proven Solution - Facilitates Operation of Research Programs - Facilitates Deployment in Multiple Sites - Cross-Platform and Cross-Compiler Compatibility - Open Resource Sponsors: BCI2000 development is sponsored by NIH/NIBIB R01 and NIH/NINDS U24 grants. Keywords: General, Purpose, Systems, Brain, Computer, Interface, Research, Application, Brain, Diverse, Educational, Laboratory, Software, Network, Signals, Behavioral, Eye, Tracker,

Proper citation: Brain Computer Interface 2000 Software Package (RRID:SCR_007346) Copy   


http://www.loni.usc.edu/Software/IO_Plugins

Decoders and encoders written in Java for the AFNI, ANALYZE, DICOM, ECAT, GE, MINC, NIFTI and other neuroimaging file formats.The plugins use Java Image I/O interfaces to read and write metadata and image data and can read and write AFNI, ANALYZE 7.5, DICOM, ECAT 7.2, GE 5.0, INTERFILE (including hrrt), MINC, NIFTI, and UCLA PACS file formats. All source code is provided and usage examples are included.

Proper citation: LONI Java Image I/O Plugins (RRID:SCR_008277) Copy   


  • RRID:SCR_009586

    This resource has 100+ mentions.

http://www.nmr.mgh.harvard.edu/DOT/resources/homer2/home.htm

Software matlab scripts used for analyzing fNIRS data to obtain estimates and maps of brain activation. Graphical user interface (GUI) for visualization and analysis of functional near-infrared spectroscopy (fNIRS) data.

Proper citation: Homer2 (RRID:SCR_009586) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_014185

    This resource has 1+ mentions.

http://www.nitrc.org/projects/caworks

A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.

Proper citation: CAWorks (RRID:SCR_014185) Copy   


  • RRID:SCR_014937

    This resource has 10+ mentions.

http://becs.aalto.fi/en/research/bayes/drifter/

Model based Bayesian method for eliminating physiological noise from fMRI data. This algorithm uses image voxel analysis to isolate the cardiac and respiratory noise from the relevant data.

Proper citation: DRIFTER (RRID:SCR_014937) Copy   


  • RRID:SCR_017448

https://github.com/nebneuron/neural-ideal

Software package for extracting neural activity codes.

Proper citation: Neural Ideal (RRID:SCR_017448) Copy   


  • RRID:SCR_017450

    This resource has 1+ mentions.

https://github.com/Nevermore520/NeuronTools

Software tools for converting data files into persistence diagrams and distance matrices.

Proper citation: Neuron Tools (RRID:SCR_017450) Copy   


http://pdbml.pdb.org/

Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.

Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   


http://connectomes.utah.edu/

A web-compliant application that allows connectomics visualization by converting datasets to web-optimized tiles, delivering volume transforms to client devices, and providing groups of users with connectome annotation tools and data simultaneously via conventional internet connections. Viking is an extensible tool for connectomics analysis and is generalizable to histomics applications.

Proper citation: Viking Viewer for Connectomics (RRID:SCR_005986) Copy   


http://coins.mrn.org/

A web-based neuroimaging and neuropsychology software suite that offers versatile, automatable data upload/import/entry options, rapid and secure sharing of data among PIs, querying and export all data, real-time reporting, and HIPAA and IRB compliant study-management tools suitable to large institutions as well as smaller scale neuroscience and neuropsychology researchers. COINS manages over over 400 studies, more than 265,000 clinical neuropsychological assessments, and 26,000 MRI, EEG, and MEG scan sessions collected from 18,000 participants at over ten institutions on topics related to the brain and behavior. As neuroimaging research continues to grow, dynamic neuroinformatics systems are necessary to store, retrieve, mine and share the massive amounts of data. The Collaborative Informatics and Neuroimaging Suite (COINS) has been created to facilitate communication and cultivate a data community. This tool suite offers versatile data upload/import/entry options, rapid and secure sharing of data among PIs, querying of data types and assessments, real-time reporting, and study-management tools suitable to large institutions as well as smaller scale researchers. It manages studies and their data at the Mind Research Network, the Nathan Kline Institute, University of Colorado Boulder, the Olin Neuropsychiatry Research Center (at) Hartford Hospital, and others. COINS is dynamic and evolves as the neuroimaging field grows. COINS consists of the following collaboration-centric tools: * Subject and Study Management: MICIS (Medical Imaging Computer Information System) is a centralized PostgreSQL-based web application that implements best practices for participant enrollment and management. Research site administrators can easily create and manage studies, as well as generate reports useful for reporting to funding agencies. * Scan Data Collection: An automated DICOM receiver collects, archives, and imports imaging data into the file system and COINS, requiring no user intervention. The database also offers scan annotation and behavioral data management, radiology review event reports, and scan time billing. * Assessment Data Collection: Clinical data gathered from interviews, questionnaires, and neuropsychological tests are entered into COINS through the web application called Assessment Manager (ASMT). ASMT's intuitive design allows users to start data collection with little or no training. ASMT offers several options for data collection/entry: dual data entry, for paper assessments, the Participant Portal, an online tool that allows subjects to fill out questionnaires, and Tablet entry, an offline data entry tool. * Data Sharing: De-identified neuroimaging datasets with associated clinical-data, cognitive-data, and associated meta-data are available through the COINS Data Exchange tool. The Data Exchange is an interface that allows investigators to request and share data. It also tracks data requests and keeps an inventory of data that has already been shared between users. Once requests for data have been approved, investigators can download the data directly from COINS.

Proper citation: Mind Research Network - COINS (RRID:SCR_000805) Copy   


  • RRID:SCR_002604

    This resource has 1+ mentions.

http://www.nitrc.org/projects/tumorsim/

Simulation software that generates pathological ground truth from a healthy ground truth. The software requires an input directory that describes a healthy anatomy (anatomical probabilities, mesh, diffusion tensor image, etc) and then outputs simulation images.

Proper citation: TumorSim (RRID:SCR_002604) Copy   


  • RRID:SCR_007345

    This resource has 500+ mentions.

http://www.physionet.org/

Collection of dissemination and exchange recorded biomedical signals and open-source software for analyzing them. Provides facilities for cooperative analysis of data and evaluation of proposed new algorithm. Providies free electronic access to PhysioBank data and PhysioToolkit software. Offers service and training via on-line tutorials to assist users at entry and more advanced levels. In cooperation with annual Computing in Cardiology conference, PhysioNet hosts series of challenges, in which researchers and students address unsolved problems of clinical or basic scientific interest using data and software provided by PhysioNet. All data included in PhysioBank, and all software included in PhysioToolkit, are carefully reviewed. Researchers are further invited to contribute data and software for review and possible inclusion in PhysioBank and PhysioToolkit. Please review guidelines before submitting material.

Proper citation: PhysioNet (RRID:SCR_007345) Copy   


http://www.radiology.ucsf.edu/cind

Biomedical technology research center that develops and validates new imaging methods for detecting brain abnormalities in neurodegenerative diseases, including Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, as well as epilepsy, depression, and other conditions associated with nerve loss in the brain. As people around the globe live longer, the impact of neurodegenerative diseases is expected to increase further with dire social and economical consequences for societies if no effective treatments are developed soon. The development at CIND is aimed to improve magnetic resonance imaging (MRI). The ultimate goal of the scientific program is to identify imaging markers that improve accuracy in diagnosing neurodegenerative diseases at early stages, achieve more reliable prognoses of disease progression, and facilitate the discovery of effective treatment interventions. In addition to addressing the general needs for studying neurodegenerative diseases, another focus of CIND concerns brain diseases associated with military service and war combat, such as post traumatic stress disorder (PTSD), brain trauma, gulf war illness and the long-term effects of these conditions on the mental health of veterans. The symbiosis between CIND and the Veterans Administration Medical Center in San Francisco makes this program uniquely suited to serve military veterans.

Proper citation: Center for Imaging of Neurodegenerative Diseases (RRID:SCR_001968) Copy   


  • RRID:SCR_003494

    This resource has 10+ mentions.

http://icatb.sourceforge.net/fusion/fusion_startup.php

A MATLAB toolbox which implements the joint Independent Component Analysis (ICA), parallel ICA and CCA with joint ICA methods. It is used to to extract the shared information across modalities like fMRI, EEG, sMRI and SNP data. * Environment: Win32 (MS Windows), Gnome, KDE * Operating System: MacOS, Windows, Linux * Programming Language: MATLAB * Supported Data Format: ANALYZE, NIfTI-1

Proper citation: Fusion ICA Toolbox (RRID:SCR_003494) Copy   


  • RRID:SCR_002716

    This resource has 50+ mentions.

http://synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm

A Windows (Win32) software application for montaging, aligning, tracing, measuring, and reconstructing objects from serial microscopic section images. The software is designed for microscopy in which section resolution is much less than section thickness, such as transmitted electron microscopy (EM) where the resolution is a few nanometers while the section thickness is many tens of nanometers. Reconstruct can easily handle series with hundreds of very large, high-resolution section images. It facilitates image cropping, scaling and alignment. Multiple images can be placed side-by-side to make a montage of a section from a mosaic of images. The alignment of adjacent sections can be rapidly compared by either blending the two sections or by flickering between them. Sections can be moved while blended. Reconstruct aids in the calibration of image size. Images taken at different magnifications can be combined, calibrated and aligned. Tools for tracing and editing of objects on sections are provided. Objects can be surfaced from the traces and previewed in an OpenGL-based 3D scene window. The 3D scene can be saved as a bitmap or as a VRML file.

Proper citation: Synapse Web Reconstruct (RRID:SCR_002716) Copy   


  • RRID:SCR_000319

http://code.google.com/p/annotare/

A software tool for annotating biomedical investigations and the resulting data, then producing a MAGE-TAB file. This software is a standalone desktop which features: an editor function, an annotation modifier, incorporation of terms from biomedical ontologies, standard templates for common experiment types, a design aid to help create a new document, and a validator that checks for syntactic and semantic violations.

Proper citation: Annotare (RRID:SCR_000319) Copy   


  • RRID:SCR_001392

    This resource has 1+ mentions.

http://bmsr.usc.edu/software/targetgene/

MATLAB tool to effectively identify potential therapeutic targets and drugs in cancer using genetic network-based approaches. It can rapidly extract genetic interactions from a precompiled database stored as a MATLAB MAT-file without the need to interrogate remote SQL databases. Millions of interactions involving thousands of candidate genes can be mapped to the genetic network within minutes. While TARGETgene is currently based on the gene network reported in (Wu et al.,Bioinformatics 26:807-813, 2010), it can be easily extended to allow the optional use of other developed gene networks. The simple graphical user interface also enables rapid, intuitive mapping and analysis of therapeutic targets at the systems level. By mapping predictions to drug-target information, TARGETgene may be used as an initial drug screening tool that identifies compounds for further evaluation. In addition, TARGETgene is expected to be applicable to identify potential therapeutic targets for any type or subtype of cancers, even those rare cancers that are not genetically recognized. Identification of Potential Therapeutic Targets * Prioritize potential therapeutic targets from thousands of candidate genes generated from high-throughput experiments using network-based metrics * Validate predictions (prioritization) using user-defined benchmark genes and curated cancer genes * Explore biologic information of selected targets through external databases (e.g., NCBI Entrez Gene) and gene function enrichment analysis Initial Drug Screening * Identify for further evaluation existing drugs and compounds that may act on the potential therapeutic targets identified by TARGETgene * Explore general information on identified drugs of interest through several external links Operating System: Windows XP / Vista / 7

Proper citation: TARGETgene (RRID:SCR_001392) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X