Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 167 results
Snippet view Table view Download 167 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_000514

http://www.sanger.ac.uk/cgi-bin/teams/team30/arnie

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1,2023. Database that integrates the extracellular protein interaction network generated in our lab using AVEXIS technology with spatiotemporal expression patterns for all genes in the network. The tool allows users to browse the network by clicking on individual proteins, or by specifying the spatiotemporal parameters. Clicking on connector lines will allow users to compare stage-matched expression patterns for genes encoding interacting proteins. Additionally, users can rapidly search for their genes in the network using the BLAST server provided.

Proper citation: ARNIE (RRID:SCR_000514) Copy   


  • RRID:SCR_000589

    This resource has 1+ mentions.

http://www.nactem.ac.uk/biolexicon/

A large-scale English terminological database that contains over 2.2.M lexical entries (3.3M semantic relations), terminological variants and rich linguistic information (subcategorization frames) which supports text mining systems. It is primarily intended to support text mining and information retrieval in the biomedical domain. The BioLexicon provides specific information to help determine the relevant facts to be extracted. BioLexicon is available in a relational database format (MySQL dump format) and it adheres to the EAGLES/ISO standards for lexical resources.

Proper citation: BioLexicon (RRID:SCR_000589) Copy   


http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

Database to store and display somatic mutation information and related details and contains information relating to human cancers. The mutation data and associated information is extracted from the primary literature. In order to provide a consistent view of the data a histology and tissue ontology has been created and all mutations are mapped to a single version of each gene. The data can be queried by tissue, histology or gene and displayed as a graph, as a table or exported in various formats.
Some key features of COSMIC are:
* Contains information on publications, samples and mutations. Includes samples which have been found to be negative for mutations during screening therefore enabling frequency data to be calculated for mutations in different genes in different cancer types.
* Samples entered include benign neoplasms and other benign proliferations, in situ and invasive tumours, recurrences, metastases and cancer cell lines.

Proper citation: COSMIC - Catalogue Of Somatic Mutations In Cancer (RRID:SCR_002260) Copy   


  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


  • RRID:SCR_002105

    This resource has 10000+ mentions.

http://htslib.org/

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

Proper citation: SAMTOOLS (RRID:SCR_002105) Copy   


  • RRID:SCR_002774

    This resource has 100+ mentions.

http://www.genedb.org/Homepage

Database of genomes at various stages of completion, from early access to partial genomes with automatic annotation through to complete genomes with extensive manual curation. Its primary goals are: 1) to provide reliable access to the latest sequence data and annotation/curation for the whole range of organisms sequenced by the Pathogen group, and 2) to develop the website and other tools to aid the community in accessing and obtaining the maximum value from these data.

Proper citation: GeneDB (RRID:SCR_002774) Copy   


http://www.well.ox.ac.uk/

An international leader in genetics, genomics and structural biology, and research institute of the Nuffield Department of Medicine at the University of Oxford, whose objective is to extend our understanding on how genetic inheritance makes us who we are in order to gain a clearer insight into mechanisms of health and disease. Looking across all three billion letters of the human genetic code, they aim to pinpoint variant spellings and discover how they increase or decrease an individual's risk of falling ill. They collaborate with research teams across the world on a number of large-scale studies in these areas.

Proper citation: Wellcome Trust Centre for Human Genetics (RRID:SCR_003307) Copy   


http://www.ebi.ac.uk/pride/

Centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. Originally it was developed to provide a common data exchange format and repository to support proteomics literature publications. This remit has grown with PRIDE, with the hope that PRIDE will provide a reference set of tissue-based identifications for use by the community. The future development of PRIDE has become closely linked to HUPO PSI. PRIDE encourages and welcomes direct user submissions of protein and peptide identification data to be published in peer-reviewed publications. Users may Browse public datasets, use PRIDE BioMart for custom queries, or download the data directly from the FTP site. PRIDE has been developed through a collaboration of the EMBL-EBI, Ghent University in Belgium, and the University of Manchester.

Proper citation: Proteomics Identifications (PRIDE) (RRID:SCR_003411) Copy   


http://www.port.ac.uk/research/exrc/

Supports researchers using Xenopus models. Researchers are encouraged to deposit Xenopus transgenic and mutant lines, Xenopus in situ hybridization probes, Xenopus specific antibodies and Xenopus expression clones with the Centre. EXRC staff perform quality assurance testing on these reagents and then make them available to researchers at cost. Supplies wild-type Xenopus, embryos, oocytes and Xenopus tropicalis fosmids.

Proper citation: European Xenopus Resource Center (RRID:SCR_007164) Copy   


  • RRID:SCR_007197

    This resource has 10+ mentions.

http://www.neuroconstruct.org/

Software for simulating complex networks of biologically realistic neurons, i.e. models incorporating dendritic morphologies and realistic cell membrane conductance, implemented in Java and generates script files for the NEURON and GENESIS simulators, with support for other simulation platforms (including PSICS and PyNN) in development. neuroConstruct is being developed in the Silver Lab in the Department of Neuroscience, Physiology and Pharmacology at UCL and uses the latest NeuroML specifications, including MorphML, ChannelML and NetworkML. Some of the key features of neuroConstruct are: Creation of networks of biologically realistic neurons, positioned in 3D space. Complex connectivity patterns between cell groups can be specified for the networks. Can import morphology files in GENESIS, NEURON, Neurolucida, SWC and MorphML format for inclusion in network models. Simulations can be run on the NEURON or GENESIS platforms. Cellular processes (synapses/channel mechanisms) can be imported from native script files or created in ChannelML. Recording of simulation data generated by the simulation and visualization/analysis of data. Stored simulation runs can be viewed and managed through the Simulation Browser interface.

Proper citation: neuroConstruct (RRID:SCR_007197) Copy   


http://www.genes2cognition.org/

A neuroscience research program that studies genes, the brain and behavior in an integrated manner, established to elucidate the molecular mechanisms of learning and memory, and shed light on the pathogenesis of disorders of cognition. Central to G2C investigations is the NMDA receptor complex (NRC/MASC), that is found at the synapses in the central nervous system which constitute the functional connections between neurons. Changes in the receptor and associated components are thought to be in a large part responsible for the phenomenon of synaptic plasticity, that may underlie learning and memory. G2C is addressing the function of synapse proteins using large scale approaches combining genomics, proteomics and genetic methods with electrophysiological and behavioral studies. This is incorporated with computational models of the organization of molecular networks at the synapse. These combined approaches provide a powerful and unique opportunity to understand the mechanisms of disease genes in behavior and brain pathology as well as provide fundamental insights into the complexity of the human brain. Additionally, Genes to Cognition makes available its biological resources, including gene-targeting vectors, ES cell lines, antibodies, and transgenic mice, generated for its phenotyping pipeline. The resources are freely-available to interested researchers.

Proper citation: Genes to Cognition: Neuroscience Research Programme (RRID:SCR_007121) Copy   


  • RRID:SCR_007891

    This resource has 1000+ mentions.

http://rfam.xfam.org/

The Rfam database is a collection of RNA families, each represented by multiple sequence alignments, consensus secondary structures and covariance models (CMs). The families in Rfam break down into three broad functional classes: Non-coding RNA genes, structured cis-regulatory elements and self-splicing RNAs. Typically these functional RNAs often have a conserved secondary structure which may be better preserved than the RNA sequence. The CMs used to describe each family are a slightly more complicated relative of the profile hidden Markov models (HMMs) used by Pfam. CMs can simultaneously model RNA sequence and the structure in an elegant and accurate fashion. Rfam is also available via FTP. You can find data in Rfam in various ways... * Analyze your RNA sequence for Rfam matches * View Rfam family annotation and alignments * View Rfam clan details * Query Rfam by keywords * Fetch families or sequences by NCBI taxonomy * Enter any type of accession or ID to jump to the page for a Rfam family, sequence or genome

Proper citation: Rfam (RRID:SCR_007891) Copy   


  • RRID:SCR_007959

    This resource has 100+ mentions.

http://t1dbase.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 26,2019. In October 2016, T1DBase has merged with its sister site ImmunoBase (https://immunobase.org). Documented on March 2020, ImmunoBase ownership has been transferred to Open Targets (https://www.opentargets.org). Results for all studies can be explored using Open Targets Genetics (https://genetics.opentargets.org). Database focused on genetics and genomics of type 1 diabetes susceptibility providing a curated and integrated set of datasets and tools, across multiple species, to support and promote research in this area. The current data scope includes annotated genomic sequences for suspected T1D susceptibility regions; genetic data; microarray data; and global datasets, generally from the literature, that are useful for genetics and systems biology studies. The site also includes software tools for analyzing the data.

Proper citation: T1DBase (RRID:SCR_007959) Copy   


http://dictybase.org/Dicty_Info/dicty_anatomy_ontology.html

An ontology to describe Dictyostelium where the structural makeup of Dictyostelium and its composing parts including the different cell types, throughout its life cycle is defined. There are two main goals for this new tool: (1) promote the consistent annotation of Dictyostelium-specific events, such as phenotypes (already in use), and in the future, of gene expression information; and (2) encourage researchers to use the same terms with the same intended meaning. To this end, all terms are defined. The complete ontology can be browsed using EBI''s ontology browser tool. (http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=DDANAT)

Proper citation: Dictyostelium Anatomy Ontology (RRID:SCR_005929) Copy   


  • RRID:SCR_006070

    This resource has 10+ mentions.

http://www.nematodes.org/nembase4/

NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.

Proper citation: NEMBASE (RRID:SCR_006070) Copy   


http://www.ddduk.org/

The Deciphering Developmental Disorders (DDD) study aims to find out if using new genetic technologies can help doctors understand why patients get developmental disorders. To do this we have brought together doctors in the 23 NHS Regional Genetics Services throughout the UK and scientists at the Wellcome Trust Sanger Institute, a charitably funded research institute which played a world-leading role in sequencing (reading) the human genome. The DDD study involves experts in clinical, molecular and statistical genetics, as well as ethics and social science. It has a Scientific Advisory Board consisting of scientists, doctors, a lawyer and patient representative, and has received National ethical approval in the UK. Over the next few years, we are aiming to collect DNA and clinical information from 12,000 undiagnosed children in the UK with developmental disorders and their parents. The results of the DDD study will provide a unique, online catalogue of genetic changes linked to clinical features that will enable clinicians to diagnose developmental disorders. Furthermore, the study will enable the design of more efficient and cheaper diagnostic assays for relevant genetic testing to be offered to all such patients in the UK and so transform clinical practice for children with developmental disorders. Over time, the work will also improve understanding of how genetic changes cause developmental disorders and why the severity of the disease varies in individuals. The Sanger Institute will contribute to the DDD study by performing genetic analysis of DNA samples from patients with developmental disorders, and their parents, recruited into the study through the Regional Genetics Services. Using microarray technology and the latest DNA sequencing methods, research teams will probe genetic information to identify mutations (DNA errors or rearrangements) and establish if these mutations play a role in the developmental disorders observed in patients. The DDD initiative grew out of the groundbreaking DECIPHER database, a global partnership of clinical genetics centres set up in 2004, which allows researchers and clinicians to share clinical and genomic data from patients worldwide. The DDD study aims to transform the power of DECIPHER as a diagnostic tool for use by clinicians. As well as improving patient care, the DDD team will empower researchers in the field by making the data generated securely available to other research teams around the world. By assembling a solid resource of high-quality, high-resolution and consistent genomic data, the leaders of the DDD study hope to extend the reach of DECIPHER across a broader spectrum of disorders than is currently possible.

Proper citation: Deciphering Developmental Disorders (RRID:SCR_006171) Copy   


  • RRID:SCR_004181

http://images.wellcome.ac.uk/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023.Digital collection of images, with themes ranging from medical and social history to contemporary healthcare and biomedical science. The collection contains historical images from the Wellcome Library collections, Tibetan Buddhist paintings, ancient Sanskrit manuscripts written on palm leaves, beautifully illuminated Persian books and much more. The Biomedical Collection holds over 40 000 high-quality images from the clinical and biomedical sciences. Selected from the UK''s leading teaching hospitals and research institutions, it covers disease, surgery, general healthcare, sciences from genetics to neuroscience including the full range of imaging techniques. They are always looking for new high quality biomedical images from scientific researchers, clinical photographers and artists in any field of science or medicine. As a contributor you retain your original material and copyright, and receive commission and full credit each time your images are used. The annual Wellcome Images awards (previously known as Biomedical Images Awards) reward contributors for their outstanding work and winners are chosen by a panel of experts. The resulting public exhibitions are always extremely popular and receive widespread acclaim. All images on the Wellcome Images site are available free for use in: * private study and non-commercial research * examination papers * criticism and review, this applies only where there are no multiple copies made * theses submitted by a student at a higher or further education institution for the purposes of securing a degree * personal use by private individuals

Proper citation: Wellcome Images (RRID:SCR_004181) Copy   


  • RRID:SCR_004786

    This resource has 10+ mentions.

http://www.genedb.org/Homepage/Tbruceibrucei927

Database of the most recent sequence updates and annotations for the T. brucei genome. New annotations are constantly being added to keep up with published manuscripts and feedback from the Trypanosomatid research community. You may search by Protein Length, Molecular Mass, Gene Type, Date, Location, Protein Targeting, Transmembrane Helices, Product, GO, EC, Pfam ID, Curation and Comments, and Dbxrefs. BLAST and other tools are available. T. brucei possesses a two-unit genome, a nuclear genome and a mitochondrial (kinetoplast) genome with a total estimated size of 35Mb/haploid genome. The nuclear genome is split into three classes of chromosomes according to their size on pulsed-field gel electrophoresis, 11 pairs of megabase chromosomes (0.9-5.7 Mb), intermediate (300-900 kb) and minichromosomes (50-100 kb). The T. brucei genome contains a ~0.5Mb segmental duplication affecting chromosomes 4 and 8, which is responsible for some 75 gene duplicates unique to this species. A comparative chromosome map of the duplicons can be accessed here (PubmedID 18036214). Protozoan parasites within the species Trypanosoma brucei are the etiological agent of human sleeping sickness and Nagana in animals. Infections are limited to patches of sub-Saharan Africa where insects vectors of the Glossina genus are endemic. The most recent estimates indicate between 50,000 - 70,000 human cases currently exist, with 17 000 new cases each year (WHO Factsheet, 2006). In collaboration with GeneDB, the EuPathDB genomic sequence data and annotations are regularly deposited on TriTrypDB where they can be integrated with other datasets and queried using customized queries.

Proper citation: GeneDB Tbrucei (RRID:SCR_004786) Copy   


  • RRID:SCR_015953

    This resource has 10+ mentions.

http://bioconductor.org/packages/release/bioc/html/SC3.html

Software tool for the unsupervised clustering of cells from single cell RNA-Seq experiments. SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.

Proper citation: SC3 (RRID:SCR_015953) Copy   


  • RRID:SCR_016131

    This resource has 500+ mentions.

https://sanger-pathogens.github.io/gubbins/

Software application as an algorithm that iteratively identifies loci containing elevated densities of base substitutions while concurrently constructing a phylogeny based on the putative point mutations outside of these regions. It is used for phylogenetic analysis of genome sequences and generating highly accurate reconstructions under realistic models of short-term bacterial evolution., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Gubbins (RRID:SCR_016131) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X