Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 569 results
Snippet view Table view Download 569 Result(s)
Click the to add this resource to a Collection

http://genome.crg.es/software/gfftools/GFF2PS.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for visualizing annotations of genomic sequences. The program has features such as the ability to create comprehensive plots, customizable parameters, and flexibility in file format.

Proper citation: Genome BioInformatics Research Lab - gff2ps (RRID:SCR_000462) Copy   


  • RRID:SCR_000682

    This resource has 1+ mentions.

http://sourceforge.net/projects/fastuniq/

A software tool for removal of de novo duplicates in paired short DNA sequences.

Proper citation: FastUniq (RRID:SCR_000682) Copy   


  • RRID:SCR_000942

    This resource has 1+ mentions.

http://www.brown.edu/Research/Istrail_Lab/hapcompass.php

Software that utilizes a fast cycle basis algorithm for the accurate haplotype assembly of sequence data. It is able to create pairwise SNP phasings.

Proper citation: HapCompass (RRID:SCR_000942) Copy   


  • RRID:SCR_000055

    This resource has 1+ mentions.

https://github.com/SciLifeLab/facs

Software for classification of Sequences using Bloom filters that can accurately and rapidly align sequences to a reference sequence.

Proper citation: FACS (RRID:SCR_000055) Copy   


  • RRID:SCR_007942

    This resource has 1+ mentions.

http://depts.washington.edu/yeastrc/

Biomedical technology research center that (1) exploits the budding yeast Saccharomyces cerevisiae to develop novel technologies for investigating and characterizing protein function and protein structure (2) facilitates research and extension of new technologies through collaboration, and (3) actively disseminates data and technology to the research community. Through collaboration, the YRC freely provides resources and expertise in six core technology areas: Protein Tandem Mass Spectrometry, Protein Sequence-Function Relationships, Quantitative Phenotyping, Protein Structure Prediction and Design, Fluorescence Microscopy, Computational Biology.

Proper citation: Yeast Resource Center (RRID:SCR_007942) Copy   


  • RRID:SCR_003169

    This resource has 10+ mentions.

http://www.broad.mit.edu/annotation/fungi/fgi/

Produces and analyzes sequence data from fungal organisms that are important to medicine, agriculture and industry. The FGI is a partnership between the Broad Institute and the wider fungal research community, with the selection of target genomes governed by a steering committee of fungal scientists. Organisms are selected for sequencing as part of a cohesive strategy that considers the value of data from each organism, given their role in basic research, health, agriculture and industry, as well as their value in comparative genomics.

Proper citation: Fungal Genome Initiative (RRID:SCR_003169) Copy   


  • RRID:SCR_008524

    This resource has 1+ mentions.

http://www.sanger.ac.uk/Projects/Fungi/

Fungal genomes available from the Sanger Institute. Data are accessible in a number of ways; for each organism there is a BLAST server, allowing search of the sequences. Sequences can also be down-loaded directly by FTP. In addition, for those organisms being sequenced using a cosmid approach, finished and annotated cosmids are submitted to EMBL and other public databases.

Proper citation: Fungi Sequencing Projects (RRID:SCR_008524) Copy   


  • RRID:SCR_006262

    This resource has 1+ mentions.

http://linux1.softberry.com/spldb/SpliceDB.html

Database of canonical and non-canonical mammalian splice sites. The information about verified splice site sequences for canonical and non-canonical sites is presented with the supporting evidence. Weight matrices were built for the major splice groups, which can be incorporated into gene prediction programs.

Proper citation: SpliceDB (RRID:SCR_006262) Copy   


  • RRID:SCR_016509

    This resource has 1000+ mentions.

http://mirwalk.umm.uni-heidelberg.de/

Software tool to store the predicted and the experimentally validated microRNA (miRNA)-target interaction pairs. Predictions within the complete sequence of genes of human, mouse, and rat genomes. Integrates a comparative platform of miRNA-binding sites resulting from ten different prediction datasets.

Proper citation: miRWalk (RRID:SCR_016509) Copy   


  • RRID:SCR_008819

    This resource has 1+ mentions.

http://HIVBrainSeqDB.org

The HIV Brain Sequence Database (HIVBrainSeqDB) is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. For inclusion in the database, sequences must: (i) be deposited in Genbank; (ii) include some portion of the HIV env region; (iii) be clonal, amplified directly from tissue; and (iv) be sampled from the brain, or sampled from a patient for which the database already contains brain sequence. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i) brain, brainstem, and spinal cord; (ii) meninges, choroid plexus, and CSF; (iii) blood and lymphoid; and (iv) other (bone marrow, colon, lung, liver, etc). Currently, the database contains 2517 envelope sequences from 90 patients, obtained from 22 published studies. 1272 sequences are from brain; the remaining 1245 are from blood, lymph node, spleen, bone marrow, colon, lung and other non-brain tissues. The database interface utilizes a faceted interface, allowing real-time combination of multiple search parameters to assemble a meta-dataset, which can be downloaded for further analysis. This online resource will greatly facilitate analysis of the genetic aspects of HIV macrophage tropism, HIV compartmentalization and evolution within the brain and other tissue reservoirs, and the relationship of these findings to HIV-associated neurological disorders and other clinical consequences of HIV infection.

Proper citation: HIV Brain Sequence Database (RRID:SCR_008819) Copy   


http://www.kazusa.or.jp/kaos/

This site has been developed by Kazusa DNA Research Institute for the purpose of offering the science community the analyzed sequence data produced by a multi-national Arabidopsis genome sequencing project coordinated by the Arabidopsis Genome Initiatives (AGI). The aim of this service is to enable users to browse the annotated sequence data produced by all the sequencing teams of AGI through an user-friendly graphic display system and search engines. Gene structures proposed on the annotated sequences as well as those predicted by computer programs are presented and each graphic item has a hyperlink to detailed information of the corresponding area. The nucleotide sequence data deposited in GenBank by AGI was downloaded, re-computer-analyzed at Kazusa and parsed results are displayed graphically.

Proper citation: Kazusa Arabidopsis data opening site (RRID:SCR_013511) Copy   


  • RRID:SCR_007927

    This resource has 10+ mentions.

http://mips.gsf.de/simap/

It provides a database based on a pre-computed similarity matrix covering the similarity space formed by >4 million amino acid sequences from public databases and completely sequenced genomes. The database is capable of handling very large datasets and is updated incrementally. For sequence similarity searches and pairwise alignments, we implemented a grid-enabled software system, which is based on FASTA heuristics and the Smith Waterman algorithm. SimpleSIMAP and AdvancedSIMAP retrieve homologs for given protein sequences that need to be contained in the SIMAP database. While SimpleSIMAP provides only selected parameters and preconfigured search spaces, the AdvancedSIMAP allows the user to specify search space, filtering and sorting parameters in a flexible manner. Both types of queries result in lists of homologs that are linked in turn to their homologs. So the web interfaces allow users to explore quickly and interactively the protein world by homology. Sponsors: SIMAP is supported by the Department of Genome Oriented Bioinformatics of the Technische Universitt Mnchen and the Institute for Bioinformatics of the GSF-National Research Center for Environment and Health.

Proper citation: SIMAP (RRID:SCR_007927) Copy   


http://itfp.biosino.org/itfp/

ITFP is an integrated transcription factor (TF) platform, which included abundant TFs and targets message of mammalian. Support vector machine (SVM) algorithm combined with error-correcting output coding (ECOC) algorithm was utilized to identify and classify transcription factor from protein sequence of Human, Mouse and Rat. For transcription factor targets, a reverse engineering method named ARACNE was used to derive potential interaction pairs between transcription factor and downstream regulated gene from Human, Mouse and Rat gene expression profile data. Detailed information of gene expression profile data can be found in help page. Moreover, all data provided by the platform is free for non-commercial users and can be downloaded through links on help page.

Proper citation: Intergrated Transcription Factor Platform (RRID:SCR_008119) Copy   


  • RRID:SCR_008147

    This resource has 1+ mentions.

http://www.thearkdb.org/arkdb/

This website contains the mapping sequence of poultry. The ArkDB database system aims to provide a comprehensive public repository for genome mapping data from farmed and other animal species. In doing so, it aims to provide a route in to genomic and other sequence from the initial viewpoint of linkage mapping, RH mapping, physical mapping or - possibly more importantly - QTL mapping data. It's supported, in part, by the USDA-CSREES National Animal Genome Research Program in order to serve the poultry genome mapping community. This system represents a complete rewrite of the original version with the code migrated to java and the underlying database targeted at postgres (although any standards-compliant database engine should suffice). The initial release records details of maps and the markers that they contain. There are alternative entry points that target either a chromosome or a specific mapping analysis as the starting point. Limited relationships between markers are recorded and displayed. As with the previous version, all maps are drawn using data extracted from the database on the fly.

Proper citation: ChickBase (RRID:SCR_008147) Copy   


http://topdb.enzim.hu

Collection of transmembrane protein datasets containing experimentally derived topology information from the literature and from public databases. Web interface of TOPDB includes tools for searching, relational querying and data browsing, visualisation tools for topology data.

Proper citation: Topology Data Bank of Transmembrane Proteins (RRID:SCR_007964) Copy   


http://locustdb.genomics.org.cn/

The migratory locust (Locusta migratoria) is an orthopteran pest and a representative member of hemimetabolous insects. Its transcriptomic data provide invaluable information for molecular entomology study of the insect and pave a way for comparative studies of other medically, agronomically, and ecologically relevant insects. This first transcriptomic database of the locust (LocustDB) has been developed, building necessary infrastructures to integrate, organize, and retrieve data that are either currently available or to be acquired in the future. It currently hosts 45,474 high quality EST sequences from the locust, which were assembled into 12,161 unigenes. This database contains original sequence data, including homologous/orthologous sequences, functional annotations, pathway analysis, and codon usage, based on conserved orthologous groups (COG), gene ontology (GO), protein domain (InterPro), and functional pathways (KEGG). It also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. LocustDB also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. It starts with the first transcriptome information for an orthopteran and hemimetabolous insect and will be extended to provide a framework for incorporation of in-coming genomic data of relevant insect groups and a workbench for cross-species comparative studies.

Proper citation: Migratory Locust EST Database (RRID:SCR_008201) Copy   


http://www.sanger.ac.uk/Projects/C_elegans/index.shtml

The Sanger Institute and the Genome Sequencing Center at the Washington University School of Medicine, St. Louis have collaborated to sequence the genomes of both C. elegans and C. briggsae. The completed C. elegans genome sequence is represented by over 3,000 individual clone sequences which can be accessed through this site (or through WormBase). These sequences are submitted to EMBL whenever the sequence or annotation changes (e.g. modification to gene structures) and these submissions are then mirrored to GenBank and DDBJ. These sequences (along with ESTs and proteins) can be searched on our C. elegans BLAST server. WormBase is the repository of mapping, sequencing and phenotypic information for C. elegans. The worm informatics group at the Sanger Institute play a key role in assembling the whole database. They also curate and develop some of the constituent databases that comprise WormBase.

Proper citation: Caenorhabditis Genome Sequencing Projects (RRID:SCR_008155) Copy   


http://www.ebi.ac.uk/asd/aedb/index.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 27, 2013. A manual generated database for alternative exons and their properties from numerous species - the data is gathered from literature where these exons have been experimentally verified. Most alternative exons are cassette exons and are expressed in more than two tissues. Of all exons whose expression was reported to be specific for a certain tissue, the majority were expressed in the brain. At the moment, AEdb products that are available are sequence (a database of alternative exons), function (a database of functions attributed to constitutive and alternative exon), regulatory sequence (a database of transcript regulatory motifs), minigenes (a table of minigenes and their associations to splicing events), and diseases (a table of diseases associated with splicing and their associations to AltSplice). Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. The continuation and upgrade of the ASD consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database of computationally delineated alternative splicing events. Its data include alternatively spliced introns/exons, events, isoform splicing patterns and isoform peptide sequences. AltSplice data are generated by examining gene-transcript alignments. The data are annotated for various biological features including splicing signals, expression states, (SNP)-mediated splicing and cross-species conservation. AEdb forms the manually curated component of ASD. It is a literature-based data set containing sequence and properties of alternatively spliced exons, functional enumeration of observed splicing events, characterization of observed splicing regulatory elements, and a collection of experimentally clarified minigene constructs.

Proper citation: Alternative Exon Database (RRID:SCR_008157) Copy   


http://www.bioinf.mdc-berlin.de/splice/db/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. An online available compendium of alternative splice forms for several organisms (Arabidopsis thaliana, Bos taurus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Homo sapiens, Mus musculus, Rattus norvegicus, Xenopus laevis). Alternative splice forms are defined by comparing high-scoring ESTs to mRNA sequences (both from GenBank) with known exon-intron information (from ENSEMBL database) using BLAST. Repetitive sequences of all mRNAs have beforehand been masked by MaskerAid. Filtering programs with defined parameters compare the ends of each aligned sequence pair for deletions or insertions in the EST sequence, which suggest the existence of alternative splice forms. The database is accessible by typing in accession numbers (ACC) or keywords like description, gene names, organism or other keywords. (If more than one hit was found a list of all results is given.) And the result page is divided into 4 major parts. The first part (General Information About The Entry) summarizes the most important information as database ids, organism, and description. The so called alternative splice profile (ASP) of each human sequence is shown in the second part (Alternative Splice Frequency). The ASP indicates the number of alternatively spliced ESTs (NAE), the number of constitutively spliced ESTs (NCE) as well as the number of alternative splice sites (NSS) per mRNA. NAE and NCE corresponds to the EST coverage and can be used as a quality value for the predicted alternative splice variants. The NSS value specifies the splice propensity of a gene. Moreover the number of ESTs from cancerous tissues is shown. The histological source and the developmental stages are illustrated with several colors to enables the user to get an overview of the origins of the matching ESTs. Also, the Splice Site View shows graphically all alternative splice sites for the whole transcript.

Proper citation: Extended Alternatively Spliced EST Database (RRID:SCR_008186) Copy   


http://mpr.nci.nih.gov/MPR/BrowseProteins.aspx

THIS RESOURCE IS NO LONGER IN SERVICE, documented on 6/24/13. A repository of information on commercially available phospho-specific antibodies to human phosphorylation sites. It provides a BLAST search for phosphorylation sites using as query the amino acid sequence surrounding the site. It also provides direct links to the relevant antibodies from many companies including BD Pharmingen, Biosource International, Cell Signaling Technology (CST), Santa Cruz Biotechnologies, Upstate Biotechnology.

Proper citation: Mammalian Phosphorylation Resource (RRID:SCR_008210) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X