Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Platform for sharing, download, and re-analysis or meta-analysis of sophisticated, fully annotated, human electrophysiological data sets. It uses EEG Study Schema (ESS) files to provide task, data collection, and subject metadata, including Hierarchical Event Descriptor (HED) tag descriptions of all identified experimental events. Visospatial task data also available from, http://sccn.ucsd.edu/eeglab/data/headit.html: A 238-channel, single-subject EEG data set recorded at the Swartz Center, UCSD, by Arnaud Delorme, Julie Onton, and Scott Makeig is al.
Proper citation: HeadIT (RRID:SCR_005657) Copy
http://www.zebrafinchatlas.org
Expression atlas of in situ hybridization images from large collection of genes expressed in brain of adult male zebra finches. Goal of ZEBrA project is to develop publicly available on-line digital atlas that documents expression of large collection of genes within brain of adult male zebra finches.
Proper citation: Zebra Finch Expression Brain Atlas (RRID:SCR_012988) Copy
https://github.com/ReproBrainChart
Open data resource for mapping brain development and its associations with mental health. Integrates data from 5 large studies of brain development in youth from three continents (N = 6,346). Bifactor models were used to create harmonized psychiatric phenotypes, capturing major dimensions of psychopathology. Neuroimaging data were carefully curated and processed using consistent pipelines in a reproducible manner.
Proper citation: Reproducible Brain Charts (RRID:SCR_027837) Copy
https://doi.org/10.17605/OSF.IO/WDR78
Open source resource of manually curated and expert reviewed infant brain segmentations hosted on OpenNeuro.org. and OSF.io. Anatomical MRI data was segmented from 71 infant imaging visits across 51 participants, using both T1w and T2w images per visit. Images showed dramatic differences in myelination and intensities across 1–9 months, emphasizing the need for densely sampled gold-standard segmentations across early life. This dataset provides a benchmark for evaluating and improving pipelines dependent upon segmentations in the youngest populations. As such, this dataset provides a vitally needed foundation for early-life large-scale studies such as HBCD.
Proper citation: Baby Open Brains (RRID:SCR_027836) Copy
http://www.jneurosci.org/supplemental/18/12/4570/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 29, 2013. Supplemental data for the paper Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice, by Vytautas P. Bindokas, Chong C. Lee, William F. Colmers, and Richard J. Miller that appears in the Journal of Neuroscience June 15, 1998. You can view digital movies of changes in fluorescence intensity by clicking on the title of interest.
Proper citation: Hippocampal Slice Wave Animations (RRID:SCR_008372) Copy
http://www.cise.ufl.edu/~abarmpou/lab/fanDTasia/
A Java applet tool for DT-MRI processing. It opens Diffusion-Weighted MRI datasets from user's computer and performs very efficient tensor field estimation using parallel threaded processing on user's browser. No installation is required. It runs on any operating system that supports Java (Windows, Mac, Linux,...). The estimated tensor field is guaranteed to be positive definite second order or higher order and is saved in user's local disc. MATLAB functions are also provided to open the tensor fields for your convenience in case you need to perform further processing. The fanDTasia Java applet provides also vector field visualization for 2nd and 4th-order tensors, as well as calculation of various anisotropic maps. Another useful feature is 3D fiber tracking (DTI-based) which is also shown using 3d graphics on the user's browser.
Proper citation: fanDTasia Java Applet: DT-MRI Processing (RRID:SCR_009624) Copy
http://www.nitrc.org/projects/vmagnotta/
A Diffusion Tensor fiber tracking software suite that includes streamline tracking tools. The fiber tracking includes a guided tracking tool that integrates apriori information into a streamlines algorithm. This suite of programs is built using the NA-MIC toolkit and uses the Slicer3 execution model framework to define the command line arguments. These tools can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3. NOTE: All new development is being managed in a github repository. Please visit, https://github.com/BRAINSia/BRAINSTools
Proper citation: GTRACT (RRID:SCR_009651) Copy
Repository for EEG data. The International Epilepsy Electrophysiology Portal is a collaborative initiative funded by the National Institutes of Neurological Disease and Stroke. This initiative seeks to advance research towards the understanding of epilepsy by providing a platform for sharing data, tools and expertise between researchers. The portal includes a large database of scientific data and tools to analyze these datasets.
Proper citation: ieeg.org (RRID:SCR_010000) Copy
A modular and extensible web-based data management system that integrates all aspects of a multi-center study, from heterogeneous data acquisition to storage, processing and ultimately dissemination, within a streamlined platform. Through a standard web browser, users are able to perform a wide variety of tasks, such as data entry, 3D image visualization and data querying. LORIS also stores data independently from any image processing pipeline, such that data can be processed by external image analysis software tools. LORIS provides a secure web-based and database-driven infrastructure to automate the flow of clinical data for complex multi-site neuroimaging trials and studies providing researchers with the ability to easily store, link, and access significant quantities of both scalar (clinical, psychological, genomic) and multi-dimensional (imaging) data. LORIS can collect behavioral, neurological, and imaging data, including anatomical and functional 3D/4D MRI models, atlases and maps. LORIS also functions as a project monitoring and auditing platform to oversee data acquisition across multiple study sites. Confidentiality during multi-site data sharing is provided by the Subject Profile Management System, which can perform automatic removal of confidential personal information and multiple real-time quality control checks. Additionally, web interactions with the LORIS portal take place over an encrypted channel via SSL, ensuring data security. Additional features such as Double Data Entry and Statistics and Data Query GUI are included.
Proper citation: LORIS - Longitudinal Online Research and Imaging System (RRID:SCR_000590) Copy
http://www.stjudebgem.org/web/mainPage/mainPage.php
This database contains gene expression patterns assembled from mouse nervous tissues at 4 time points throughout brain development including embryonic (e) day 11.5, e15.5, postnatal (p) day 7 and adult p42. Using a high throughput in situ hybridization approach we are assembling expression patterns from selected genes and presenting them in a searchable database. The database includes darkfield images obtained using radioactive probes, reference cresyl violet stained sections, the complete nucleotide sequence of the probes used to generate the data and all the information required to allow users to repeat and extend the analyses. The database is directly linked to Pubmed, LocusLink, Unigene and Gene Ontology Consortium housed at the National Center for Biotechnology Information (NCBI) in the National Library of Medicine. These data are provided freely to promote communication and cooperation among research groups throughout the world.
Proper citation: Brain Gene Expression Map (RRID:SCR_001517) Copy
https://www.icpsr.umich.edu/icpsrweb/content/addep/index.html
Provides access to data including wide range of topics related to disability. ADDEP data can be used to better understand and inform the implementation of Americans with Disabilities Act and other disability policies.
Proper citation: Archive of Data on Disability to Enable Policy (ADDEP) (RRID:SCR_016315) Copy
http://hbatlas.org/pages/publications
A research paper with supplementary materials reporting the generation and analysis of exon-level transcriptome and associated genotyping data. The experiment represented both males and females of multiple ethnicities and examines gene regulation and expression in different areas of the brain. A data set on the human brain transcriptome as well as insights into the transcriptional foundations of human neurodevelopment is provided.
Proper citation: Spatio-temporal transcriptome of the human brain (RRID:SCR_013743) Copy
http://www.jadesantiago.com/Electrophysiology/IonChannelLab/
Software for kinetic modeling of ion channels which operates on Windows XP or Windows Vista.
Proper citation: IonChannelLab (RRID:SCR_014762) Copy
http://cerebrovascularportal.org
Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.
Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy
A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.
Proper citation: L-Measure (RRID:SCR_003487) Copy
http://national_databank.mclean.org
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. A publicly accessible data repository to provide neuroscience investigators with secure access to cohort collections. The Databank collects and disseminates gene expression data from microarray experiments on brain tissue samples, along with diagnostic results from postmortem studies of neurological and psychiatric disorders. All of the data that is derived from studies of the HBTRC collection is being incorporated into the National Brain Databank. This data is available to the general public, although strict precautions are undertaken to maintain the confidentiality of the brain donors and their family members. The system is designed to incorporate MIAME and MAGE-ML based microarray data sharing standards. Data from various types of studies conducted on brain tissue in the HBTRC collection will be available from studies using different technologies, such as gene expression profiling, quantitative RT-PCR, situ hybridization, and immunocytochemistry and will have the potential for providing powerful insights into the subregional and cellular distribution of genes and/or proteins in different brain regions and eventually in specific subregions and cellular subtypes.
Proper citation: National Brain Databank (RRID:SCR_003606) Copy
https://medinform.jmir.org/2015/4/e35
Algorithm for generating unique study identifiers in distributed and validatable fashion, in multicenter research. Light-weight, block chain style resource identifier generation for tracking resource linkage, provenance, utilization, and visualization. NHash has unique set of properties: (1) it is a pseudonym serving the purpose of linking research data about study participant for research purposes; (2) it can be generated automatically in completely distributed fashion with virtually no risk for identifier collision; (3) it incorporates set of cryptographic hash functions based on N-grams, with combination of additional encryption techniques such as shift cipher; (d) it is validatable (error tolerant) in the sense that inadvertent edit errors will mostly result in invalid identifiers.
Proper citation: NHash Identifier (RRID:SCR_025313) Copy
https://endomap.hms.harvard.edu/
Structural interactome viewer. Interactive database of endosomal protein-protein interactions identified by cross-linking mass spectrometry and modeled by AlphaFold multimer. Structural protein interactome of human early endosomes.
Proper citation: EndoMap (RRID:SCR_026690) Copy
http://www.lajollaneuroscience.org/
Our NINDS Center Core Grant supports centralized resources and facilities shared by investigators with existing NINDS-funded research projects. Our Center is composed of three research cores, each of which will enrich the effectiveness of ongoing research, and promote new research directions. The three Core facilities support Electrophysiology, Neuropathology / Histology, and High-Throughput/High-Content Chemical and Genomic Library screening. By making these important Core Services available to the local Neuroscience community, the La Jolla Neurosciences Program hopes to promote the study of how the nervous system works and develop treatments for nervous system diseases. The cores and their services are available to La Jolla neuroscientists. Core services are available to NINDS-supported neuroscience projects from local investigators as well as young neuroscientists prior to obtaining their first NIH-funded grant. * Electrophysiology: SBMRI Electrophysiology ** The Electrophysiology Core consists of the Sanford-Burnham Electrophysiology Facility. This facility can perform patch-clamp intracellular and extracellular field recordings on a range of material including cultured cells and brain slices. The Sanford-Burnham facility emphasizes electrophysiological analysis of cultured cells and the detailed electrical properties of channels, receptors and recombinant proteins expressed in Xenopus oocytes or mammalian cells. * Neuropathology: UCSD Neuropathology ** The Neuropathology laboratory applies immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy to analysis of neurological disease in animal models. * Chemical Library Screening: SBIMR Assay Development, SBIMR Chemical Library Screening, SBIMR Cheminformatics, SBIMR High-content Screening ** The Chemical Library Screening core offers high-throughput screening (HTS) of biochemical and cell-based array using traditional HTS readouts and automated microscopy for high-content screening (HCS)> These facilities also offer array development and screening, as well as cheminformatics and medicinal chemistry., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.
Proper citation: La Jolla Interdisciplinary Neurosciences Center (RRID:SCR_002772) Copy
Digital atlas of gene expression patterns in developing and adult mouse. Several reference atlases are also available through this site. Expression patterns are determined by non-radioactive in situ hybridization on serial tissue sections. Sections are available from several developmental ages: E10.5, E14.5 (whole embryos), E15.5, P7 and P56 (brains only). To retrieve expression patterns, search by gene name, site of expression, GenBank accession number or sequence homology. For viewing expression patterns, GenePaint.org features virtual microscope tool that enables zooming into images down to cellular resolution.
Proper citation: GenePaint (RRID:SCR_003015) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.