Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 176 results
Snippet view Table view Download 176 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006577

    This resource has 10+ mentions.

http://www.commondataelements.ninds.nih.gov

The purpose of the NINDS Common Data Elements (CDEs) Project is to standardize the collection of investigational data in order to facilitate comparison of results across studies and more effectively aggregate information into significant metadata results. The goal of the National Institute of Neurological Disorders and Stroke (NINDS) CDE Project specifically is to develop data standards for clinical research within the neurological community. Central to this Project is the creation of common definitions and data sets so that information (data) is consistently captured and recorded across studies. To harmonize data collected from clinical studies, the NINDS Office of Clinical Research is spearheading the effort to develop CDEs in neuroscience. This Web site outlines these data standards and provides accompanying tools to help investigators and research teams collect and record standardized clinical data. The Institute still encourages creativity and uniqueness by allowing investigators to independently identify and add their own critical variables. The CDEs have been identified through review of the documentation of numerous studies funded by NINDS, review of the literature and regulatory requirements, and review of other Institute''s common data efforts. Other data standards such as those of the Clinical Data Interchange Standards Consortium (CDISC), the Clinical Data Acquisition Standards Harmonization (CDASH) Initiative, ClinicalTrials.gov, the NINDS Genetics Repository, and the NIH Roadmap efforts have also been followed to ensure that the NINDS CDEs are comprehensive and as compatible as possible with those standards. CDEs now available: * General (CDEs that cross diseases) Updated Feb. 2011! * Congenital Muscular Dystrophy * Epilepsy (Updated Sept 2011) * Friedreich''s Ataxia * Parkinson''s Disease * Spinal Cord Injury * Stroke * Traumatic Brain Injury CDEs in development: * Amyotrophic Lateral Sclerosis (Public review Sept 15 through Nov 15) * Frontotemporal Dementia * Headache * Huntington''s Disease * Multiple Sclerosis * Neuromuscular Diseases ** Adult and pediatric working groups are being finalized and these groups will focus on: Duchenne Muscular Dystrophy, Facioscapulohumeral Muscular Dystrophy, Myasthenia Gravis, Myotonic Dystrophy, and Spinal Muscular Atrophy The following tools are available through this portal: * CDE Catalog - includes the universe of all CDEs. Users are able to search the full universe to isolate a subset of the CDEs (e.g., all stroke-specific CDEs, all pediatric epilepsy CDEs, etc.) and download details about those CDEs. * CRF Library - (a.k.a., Library of Case Report Form Modules and Guidelines) contains all the CRF Modules that have been created through the NINDS CDE Project as well as various guideline documents. Users are able to search the library to find CRF Modules and Guidelines of interest. * Form Builder - enables users to start the process of assembling a CRF or form by allowing them to choose the CDEs they would like to include on the form. This tool is intended to assist data managers and database developers to create data dictionaries for their study forms.

Proper citation: NINDS Common Data Elements (RRID:SCR_006577) Copy   


  • RRID:SCR_006636

http://ligand-expo.rutgers.edu/

An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.

Proper citation: Ligand Expo (RRID:SCR_006636) Copy   


https://fitbir.nih.gov/

Platform for Traumatic Brain Injury relevant data. System was developed to share data across entire TBI research field and to facilitate collaboration between laboratories and interconnectivity between informatics platforms. FITBIR implements interagency Common Data Elements for TBI research and provides tools and resources to extend data dictionary. Established submission strategy to ensure high quality and to provide maximum benefit to investigators. Qualified researchers can request access to data stored in FITBIR and/or data stored at federated repositories.

Proper citation: Federal Interagency Traumatic Brain Injury Research Informatics System (RRID:SCR_006856) Copy   


http://www.zebrafinchatlas.org

Expression atlas of in situ hybridization images from large collection of genes expressed in brain of adult male zebra finches. Goal of ZEBrA project is to develop publicly available on-line digital atlas that documents expression of large collection of genes within brain of adult male zebra finches.

Proper citation: Zebra Finch Expression Brain Atlas (RRID:SCR_012988) Copy   


http://cerebrovascularportal.org

Portal enables browsing, searching, and analysis of human genetic information linked to cerebrovascular disease and related traits, while protecting the integrity and confidentiality of the underlying data.

Proper citation: Cerebrovascular Disease Knowledge Portal (RRID:SCR_015628) Copy   


  • RRID:SCR_009651

    This resource has 1+ mentions.

http://www.nitrc.org/projects/vmagnotta/

A Diffusion Tensor fiber tracking software suite that includes streamline tracking tools. The fiber tracking includes a guided tracking tool that integrates apriori information into a streamlines algorithm. This suite of programs is built using the NA-MIC toolkit and uses the Slicer3 execution model framework to define the command line arguments. These tools can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3. NOTE: All new development is being managed in a github repository. Please visit, https://github.com/BRAINSia/BRAINSTools

Proper citation: GTRACT (RRID:SCR_009651) Copy   


  • RRID:SCR_010000

    This resource has 50+ mentions.

https://www.ieeg.org/

Repository for EEG data. The International Epilepsy Electrophysiology Portal is a collaborative initiative funded by the National Institutes of Neurological Disease and Stroke. This initiative seeks to advance research towards the understanding of epilepsy by providing a platform for sharing data, tools and expertise between researchers. The portal includes a large database of scientific data and tools to analyze these datasets.

Proper citation: ieeg.org (RRID:SCR_010000) Copy   


https://www.icpsr.umich.edu/icpsrweb/content/addep/index.html

Provides access to data including wide range of topics related to disability. ADDEP data can be used to better understand and inform the implementation of Americans with Disabilities Act and other disability policies.

Proper citation: Archive of Data on Disability to Enable Policy (ADDEP) (RRID:SCR_016315) Copy   


http://hbatlas.org/pages/publications

A research paper with supplementary materials reporting the generation and analysis of exon-level transcriptome and associated genotyping data. The experiment represented both males and females of multiple ethnicities and examines gene regulation and expression in different areas of the brain. A data set on the human brain transcriptome as well as insights into the transcriptional foundations of human neurodevelopment is provided.

Proper citation: Spatio-temporal transcriptome of the human brain (RRID:SCR_013743) Copy   


  • RRID:SCR_017330

    This resource has 100+ mentions.

https://syngoportal.org/

Evidence based, expert curated knowledge base for synapse. Universal reference for synapse research and online analysis platform for interpretation of omics data. Interactive knowledge base that accumulates available research about synapse biology using Gene Ontology annotations to novel ontology terms.

Proper citation: SynGO (RRID:SCR_017330) Copy   


https://kimlab.io/brain-map/DevCCF/

Open access multimodal 3D atlases of developing mouse brain that can be used to integrate mouse brain imaging data for visualization, education, cell census mapping, and more. Atlas ages include E11.5, E13.5, E15.5, E18.5, P4, P14, and P56. Web platform can be utilized to visualize and explore the atlas in 3D. Downloadable atlas can be used to align multimodal mouse brain data. Morphologically averaged symmetric template brains serve as the basis reference space and coordinate system. Anatomical labels are manually drawn in 3D based on the prosomeric model. For additional references, the P56 template includes templates and annotations from the aligned Allen Mouse Brain Common Coordinate Framework (Allen CCFv3) and aligned Molecular Atlas of the Adult Mouse Brain.

Proper citation: 3D Developmental Mouse Brain Common Coordinate Framework (RRID:SCR_025544) Copy   


  • RRID:SCR_025563

https://brainlife.io/docs/using_ezBIDS/

Web-based BIDS conversion tool to convert neuroimaging data and associated metadata to BIDS standard. Guided standardization of neuroimaging data interoperable with major data archives and platforms.

Proper citation: ezBIDS (RRID:SCR_025563) Copy   


https://pdbp.ninds.nih.gov

Common data management resource and web portal to promote discovery of Parkinson's Disease diagnostic and progression biomarker candidates for early detection and measurement of disease progression. PDBP will serve as multi-faceted platform for integrating existing biomarker efforts, standardizing data collection and management across these efforts, accelerating discovery of new biomarkers, and fostering and expanding collaborative opportunities for all stakeholders.

Proper citation: Parkinson’s Disease Biomarkers Program Data Management Resource (PDBP DMR) (RRID:SCR_002517) Copy   


  • RRID:SCR_001517

    This resource has 10+ mentions.

http://www.stjudebgem.org/web/mainPage/mainPage.php

This database contains gene expression patterns assembled from mouse nervous tissues at 4 time points throughout brain development including embryonic (e) day 11.5, e15.5, postnatal (p) day 7 and adult p42. Using a high throughput in situ hybridization approach we are assembling expression patterns from selected genes and presenting them in a searchable database. The database includes darkfield images obtained using radioactive probes, reference cresyl violet stained sections, the complete nucleotide sequence of the probes used to generate the data and all the information required to allow users to repeat and extend the analyses. The database is directly linked to Pubmed, LocusLink, Unigene and Gene Ontology Consortium housed at the National Center for Biotechnology Information (NCBI) in the National Library of Medicine. These data are provided freely to promote communication and cooperation among research groups throughout the world.

Proper citation: Brain Gene Expression Map (RRID:SCR_001517) Copy   


  • RRID:SCR_001847

    This resource has 10000+ mentions.

http://surfer.nmr.mgh.harvard.edu/

Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.

Proper citation: FreeSurfer (RRID:SCR_001847) Copy   


http://www.tarp.nih.gov/

Trans-NIH program encouraging and facilitating the study of the underlying mechanisms controlling blood vessel growth and development. Other aims include: to identify specific targets and to develop therapeutics against pathologic angiogenesis in order to reduce the morbidity due to abnormal blood vessel proliferation in a variety of disease states; to better understand the process of angiogenesis and vascularization to improve states of decreased vascularization; to encourage and facilitate the study of the processes of lymphangiogenesis; and to achieve these goals through a multidisciplinary approach, bringing together investigators with varied backgrounds and varied interests.

Proper citation: Trans-Institute Angiogenesis Research Program (RRID:SCR_000384) Copy   


http://cbrain.mcgill.ca/loris

A modular and extensible web-based data management system that integrates all aspects of a multi-center study, from heterogeneous data acquisition to storage, processing and ultimately dissemination, within a streamlined platform. Through a standard web browser, users are able to perform a wide variety of tasks, such as data entry, 3D image visualization and data querying. LORIS also stores data independently from any image processing pipeline, such that data can be processed by external image analysis software tools. LORIS provides a secure web-based and database-driven infrastructure to automate the flow of clinical data for complex multi-site neuroimaging trials and studies providing researchers with the ability to easily store, link, and access significant quantities of both scalar (clinical, psychological, genomic) and multi-dimensional (imaging) data. LORIS can collect behavioral, neurological, and imaging data, including anatomical and functional 3D/4D MRI models, atlases and maps. LORIS also functions as a project monitoring and auditing platform to oversee data acquisition across multiple study sites. Confidentiality during multi-site data sharing is provided by the Subject Profile Management System, which can perform automatic removal of confidential personal information and multiple real-time quality control checks. Additionally, web interactions with the LORIS portal take place over an encrypted channel via SSL, ensuring data security. Additional features such as Double Data Entry and Statistics and Data Query GUI are included.

Proper citation: LORIS - Longitudinal Online Research and Imaging System (RRID:SCR_000590) Copy   


  • RRID:SCR_003086

    This resource has 1000+ mentions.

http://neuromab.ucdavis.edu/

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

Proper citation: NeuroMab (RRID:SCR_003086) Copy   


  • RRID:SCR_007276

    This resource has 10+ mentions.

http://senselab.med.yale.edu

The SenseLab Project is a long-term effort to build integrated, multidisciplinary models of neurons and neural systems. It was founded in 1993 as part of the original Human Brain Project, which began the development of neuroinformatics tools in support of neuroscience research. It is now part of the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF). The SenseLab project involves novel informatics approaches to constructing databases and database tools for collecting and analyzing neuroscience information, using the olfactory system as a model, with extension to other brain systems. SenseLab contains seven related databases that support experimental and theoretical research on the membrane properties: CellPropDB, NeuronDB, ModelDB, ORDB, OdorDB, OdorMapDB, BrainPharmA pilot Web portal that successfully integrates multidisciplinary neurocience data.

Proper citation: SenseLab (RRID:SCR_007276) Copy   


  • RRID:SCR_008954

    This resource has 100+ mentions.

http://www.ini.uzh.ch/~acardona/trakem2.html

An ImageJ plugin for morphological data mining, three-dimensional modeling and image stitching, registration, editing and annotation. Two independent modalities exist: either XML-based projects, working directly with the file system, or database-based projects, working on top of a local or remote PostgreSQL database. What can you do with it? * Semantic segmentation editor: order segmentations in tree hierarchies, whose template is exportable for reuse in other, comparable projects. * Model, visualize and export 3D. * Work from your laptop on your huge, remote image storage. * Work with an endless number of images, limited only by the hard drive capacity. Dozens of formats supported thanks to LOCI Bioformats and ImageJ. * Import stacks and even entire grids (montages) of images, automatically stitch them together and homogenize their histograms for best montaging quality. * Add layers conveniently. A layer represents, for example, one 50 nm section (for TEM) or a confocal section. Each layer has its own Z coordinate and thickness, and contains images, labels, areas, nodes of 3d skeletons, profiles... * Insert layer sets into layers: so your electron microscopy serial sections can live inside your optical microscopy sections. * Run any ImageJ plugin on any image. * Measure everything: areas, volumes, pixel intensities, etc. using both built-in data structures and segmentation types, and standard ImageJ ROIs. And with double dissectors! * Visualize RGB color channels changing the opacity of each on the fly, non-destructively. * Annotate images non-destructively with floating text labels, which you can rotate/scale on the fly and display in any color. * Montage/register/stitch/blend images manually with transparencies, semiautomatically, or fully automatically within and across sections, with translation, rigid, similarity and affine models with automatically extracted SIFT features. * Correct the lens distortion present in the images, like those generated in transmission electron microscopy. * Add alpha masks to images using ROIs, for example to split images in two or more parts, or to remove the borders of an image or collection of images. * Model neuronal arbors with 3D skeletons (with areas or radiuses), and synapses with connectors. * Undo all steps. And much more...

Proper citation: TrakEM2 (RRID:SCR_008954) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X