Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 569 results
Snippet view Table view Download 569 Result(s)
Click the to add this resource to a Collection

http://meme.nbcr.net/meme/cgi-bin/gomo.cgi

Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy   


http://www.pdbj.org/

PDBj (Protein Data Bank Japan) maintains a centralized PDB archive of macromolecular structures and provides integrated tools, in collaboration with the RCSB, the BMRB in USA and the PDBe in EU.

Proper citation: PDBj - Protein Data Bank Japan (RRID:SCR_008912) Copy   


  • RRID:SCR_008966

    This resource has 50+ mentions.

http://hymenopteragenome.org/beebase/

Gene sequences and genomes of Bombus terrestris, Bombus impatiens, Apis mellifera and three of its pathogens, that are discoverable and analyzed via genome browsers, blast search, and apollo annotation tool. The genomes of two additional species, Apis dorsata and A. florea are currently under analysis and will soon be incorporated.BeeBase is an archive and will not be updated. The most up-to-date bee genome data is now available through the navigation bar on the HGD Home page.

Proper citation: BeeBase (RRID:SCR_008966) Copy   


  • RRID:SCR_005259

    This resource has 1+ mentions.

http://compbio.cs.brown.edu/projects/gasv/

Software tool combining both paired read and read depth signals into probabilistic model which can analyze multiple alignments of reads. Used to find structural variation in both normal and cancer genomes using data from variety of next-generation sequencing platforms. Used to predict structural variants directly from aligned reads in SAM/BAM format.Combines read depth information along with discordant paired read mappings into single probabilistic model two common signals of structural variation. When multiple alignments of read are given, GASVPro utilizes Markov Chain Monte Carlo procedure to sample over the space of possible alignments.

Proper citation: GASVPro (RRID:SCR_005259) Copy   


  • RRID:SCR_005397

    This resource has 10+ mentions.

http://www.bioextract.org/GuestLogin

An open, web-based system designed to aid researchers in the analysis of genomic data by providing a platform for the creation of bioinformatic workflows. Scientific workflows are created within the system by recording tasks performed by the user. These tasks may include querying multiple, distributed data sources, saving query results as searchable data extracts, and executing local and web-accessible analytic tools. The series of recorded tasks can then be saved as a reproducible, sharable workflow available for subsequent execution with the original or modified inputs and parameter settings. Integrated data resources include interfaces to the National Center for Biotechnology Information (NCBI) nucleotide and protein databases, the European Molecular Biology Laboratory (EMBL-Bank) non-redundant nucleotide database, the Universal Protein Resource (UniProt), and the UniProt Reference Clusters (UniRef) database. The system offers access to numerous preinstalled, curated analytic tools and also provides researchers with the option of selecting computational tools from a large list of web services including the European Molecular Biology Open Software Suite (EMBOSS), BioMoby, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The system further allows users to integrate local command line tools residing on their own computers through a client-side Java applet.

Proper citation: BioExtract (RRID:SCR_005397) Copy   


  • RRID:SCR_005311

    This resource has 50+ mentions.

http://statgenpro.psychiatry.hku.hk/limx/kggseq/

A biological Knowledge-based mining platform for Genomic and Genetic studies using Sequence data. The software platform, constituted of bioinformatics and statistical genetics functions, makes use of valuable biologic resources and knowledge for sequencing-based genetic mapping of variants / genes responsible for human diseases / traits. It facilitates geneticists to fish for the genetic determinants of human diseases / traits in the big sea of DNA sequences. KGGSeq has paid attention to downstream analysis of genetic mapping. The framework was implemented to filter and prioritize genetic variants from whole exome sequencing data.

Proper citation: KGGSeq (RRID:SCR_005311) Copy   


http://www.yandell-lab.org/software/mwas.html

The MAKER Web Annotation Service (MWAS) is an easily configurable web-accessible genome annotation pipeline. It''''s purpose is to allow research groups with small to intermediate amounts of eukaryotic and prokaryotic genome sequence (i.e. BAC clones, small whole genomes, preliminary sequencing data, etc.) to independently annotate and analyze their data and produce output that can be loaded into a genome database. MWAS is build on the stand alone genome annotation pipeline MAKER, and users who wish to annotate larger datasets and whole genomes are free to download MAKER for use on their own systems. MWAS identifies repeats, aligns ESTs and proteins to a genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence-based quality values. MWAS can also automatically train popular gene prediction algorithms for use on new genomes for which pre-existing information is limited. MAKER is a member of the Generic Model Organism Database (GMOD) project and output produced by this site can be directly used with other GMOD tools. Annotations can be directly viewed online by the user via GBrowse, JBrowse, and Apollo, or they can be downloaded for local analysis and integration into a genome database. MWAS also supplies summary statistics on sequence features via the Sequence Ontology tool SOBA. MWAS should prove especially useful for emerging model organism genome projects with minimal bioinformatics expertise and computer resources, since a user can produce final genome annotations without having to install and configure any software locally.

Proper citation: MAKER Web Annotation Service (RRID:SCR_005318) Copy   


  • RRID:SCR_005350

    This resource has 100+ mentions.

http://users-birc.au.dk/biopv/php/fabox/

Tools for splitting, joining and otherwise manipulating FASTA format sequence files. The first tools in the toolbox is for manipulating fasta headers, cropping alignments and doing some sequence comparison allowing users to combine the description of data (often in excel spreadsheets) with the actual data (often DNA sequences). Also, producing correct input files for a range of programs seems to be problematic for the average user. Hence, some converters in some of the services have been included as well as some stand-alone converters. The converters are not necessarily meant to provide the final input file, but you''ll get a valid input file for Arlequin, MrBayes etc. - that you may further edit so it suit your needs. This means that you may need to combine several of the tools to finish your handling - but it keeps it relatively simple to use. Please note that FaBox is written in PHP and ONLY RUNS ON A WEBSERVER.

Proper citation: FaBox (RRID:SCR_005350) Copy   


  • RRID:SCR_005410

    This resource has 10+ mentions.

http://www.pazar.info/

Database that unites independently created and maintained data collections of transcription factor and regulatory sequence annotation. The flexible PAZAR schema permits the representation of diverse information derived from experiments ranging from biochemical protein-DNA binding to cellular reporter gene assays. Data collections can be made available to the public, or restricted to specific system users. The data ''boutiques'' within the shopping-mall-inspired system facilitate the analysis of genomics data and the creation of predictive models of gene regulation., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PAZAR (RRID:SCR_005410) Copy   


  • RRID:SCR_005493

    This resource has 100+ mentions.

http://www.jcvi.org/cgi-bin/tigrfams/index.cgi

Consists curated multiple sequence alignments, Hidden Markov Models (HMMs) for protein sequence classification, and associated information designed to support automated annotation of (mostly prokaryotic) proteins. Starting with release 10.0, TIGRFAMs models use HMMER3, which provides excellent search speed as well as exquisite search sensitivity. See the "TIGRFAMs Complete Listing" page to review the accession, protein name, model type, and EC number (if assigned) of all models. TIGRFAMs is a member database in InterPro. The HMM libraries and supporting files are available to download and use for free from our FTP site.

Proper citation: TIGRFAMS (RRID:SCR_005493) Copy   


  • RRID:SCR_005476

    This resource has 10000+ mentions.

http://bowtie-bio.sourceforge.net/index.shtml

Software ultrafast memory efficient tool for aligning sequencing reads. Bowtie is short read aligner.

Proper citation: Bowtie (RRID:SCR_005476) Copy   


  • RRID:SCR_005573

    This resource has 50+ mentions.

http://www.genexplain.com/

An online toolbox and workflow management system for a broad range of bioinformatic and systems biology applications. The individual modules, or Bricks, are unified under a standardized interface, with a consistent look-and-feel and can flexibly be put together to comprehensive workflows. The workflow management is intuitively handled through a simple drag-and-drop system. With this system, you can edit the predefined workflows or compose your own workflows from scratch. Your own Bricks can easily be added as scripts or plug-ins and can be used in combination with pre-existing analyses. GeneXplain GmbH provides a number of state-of-the-art bricks; some of them can be obtained free of charge, while others require licensing for small fee in order to guarantee active maintenance and dynamic adaptation to the rapidly developing know-how in this field.

Proper citation: geneXplain (RRID:SCR_005573) Copy   


  • RRID:SCR_005587

    This resource has 1+ mentions.

http://mesquiteproject.org/packages/chromaseq/

A software package in Mesquite that processes chromatograms, makes contigs, base calls, etc., using in part the programs Phred and Phrap.

Proper citation: Chromaseq (RRID:SCR_005587) Copy   


  • RRID:SCR_005829

    This resource has 5000+ mentions.

http://www.ebi.ac.uk/Tools/pfa/iprscan/

Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.

Proper citation: InterProScan (RRID:SCR_005829) Copy   


  • RRID:SCR_005780

    This resource has 10000+ mentions.

Ratings or validation data are available for this resource

http://genome.ucsc.edu/

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy   


  • RRID:SCR_007038

    This resource has 100+ mentions.

http://www.psort.org

Portal to the PSORT family of computer programs for the prediction of protein localization sites in cells, as well as other datasets and resources relevant to localization prediction. The standalone versions are available for download for larger analyses.

Proper citation: Psort (RRID:SCR_007038) Copy   


  • RRID:SCR_006969

    This resource has 100+ mentions.

http://prodom.prabi.fr/

Comprehensive set of protein domain families automatically generated from UniProt Knowledge Database. Automated clustering of homologous domains generated from global comparison of all available protein sequences., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: ProDom (RRID:SCR_006969) Copy   


  • RRID:SCR_007079

    This resource has 1+ mentions.

http://www.genoscope.cns.fr/externe/tetraodon/

The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.

Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy   


http://medgen.ugent.be/rtprimerdb/

Database for primer and probe sequences used in real-time PCR assays employing popular chemistries (SYBR Green I, Taqman, Hybridization Probes, Molecular Beacon) to prevent time-consuming primer design and experimental optimization, and to introduce a certain level of uniformity and standardization among different laboratories. Researchers are encouraged to submit their validated primer and probe sequence, so that other users can benefit from their expertise. The database can be queried using the official gene name or symbol, Entrez or Ensembl Gene identifier, SNP identifier, or oligonucleotide sequence. Different options make it possible to restrict a query to a particular application (Gene Expression Quantification/Detection, DNA Copy Number Quantification/Detection, SNP Detection, Mutation Analysis, Fusion Gene Quantification/Detection, Chromatin immunoprecipitation (ChIP)), organism (Human, Mouse, Rat, and others) or detection chemistry.

Proper citation: RTPrimerDB- The Real-Time PCR and Probe Database (RRID:SCR_007106) Copy   


  • RRID:SCR_007105

    This resource has 1000+ mentions.

http://weizhong-lab.ucsd.edu/cd-hit/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for clustering biological sequences with many applications in various fields such as making non-redundant databases, finding duplicates, identifying protein families, filtering sequence errors and improving sequence assembly etc. It is very fast and can handle extremely large databases. CD-HIT helps to significantly reduce the computational and manual efforts in many sequence analysis tasks and aids in understanding the data structure and correct the bias within a dataset. The CD-HIT package has CD-HIT, CD-HIT-2D, CD-HIT-EST, CD-HIT-EST-2D, CD-HIT-454, CD-HIT-PARA, PSI-CD-HIT, CD-HIT-OTU and over a dozen scripts. * CD-HIT (CD-HIT-EST) clusters similar proteins (DNAs) into clusters that meet a user-defined similarity threshold. * CD-HIT-2D (CD-HIT-EST-2D) compares 2 datasets and identifies the sequences in db2 that are similar to db1 above a threshold. * CD-HIT-454 identifies natural and artificial duplicates from pyrosequencing reads. * CD-HIT-OTU cluster rRNA tags into OTUs The usage of other programs and scripts can be found in CD-HIT user''s guide. CD-HIT was originally developed by Dr. Weizhong Li at Dr. Adam Godzik''s Lab at the Burnham Institute (now Sanford-Burnham Medical Research Institute)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: CD-HIT (RRID:SCR_007105) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X