Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 293 results
Snippet view Table view Download 293 Result(s)
Click the to add this resource to a Collection

http://www.wwpdb.org/

Public global Protein Data Bank archive of macromolecular structural data overseen by organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). This site provides information about services provided by individual member organizations and about projects undertaken by wwPDB. Data available via websites of its member organizations.

Proper citation: Worldwide Protein Data Bank (wwPDB) (RRID:SCR_006555) Copy   


http://www.med.upenn.edu/cndr/biosamples-brainbank.html

A brain and tissue bank that contains human brain samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and other related neurodegenerative dementias and movement disorders. This brain bank serves as a resource for scientists and researchers, providing access to tissue samples for further research. While priority is given to University of Pennsylvania researchers, this bank will provide requests to researchers not associated with the University of Pennsylvania. This tissue bank accepts donations from those seeing a University of Pennsylvania physician or collaborator.

Proper citation: University of Pennslyvania Brain Bank (RRID:SCR_008820) Copy   


http://www.essentialtremor.us/

Finding a cure for any neurological disorder begins with the scientific study of the disorder''s causes, processes, and development in the brain. For essential tremor (ET), rigorous study of this kind had not been undertaken until 2003, when the Essential Tremor Centralized Brain Repository (ETCBR) was established at Columbia University. For the past five years, brain tissue from ET donors has been collected, processed and compared alongside age-matched control brains at the ETCBR, and already several significant findings have been made. However, there is still much to learn and a severe shortage of ET brains for scientific study. If you have been diagnosed with essential tremor, donating your brain tissue in the hours immediately after your death is of utmost importance in providing crucial information about what causes ET. Direct analysis of the shape and number of nerve cells and their content will provide medical researchers with the information they need in order to understand this complex illness. By advancing our medical knowledge of ET, the gift of brain tissue is a central piece of the puzzle in the search to develop better treatments and find a cure.

Proper citation: Essential Tremor Centralized Brain Repository (RRID:SCR_004464) Copy   


  • RRID:SCR_010520

    This resource has 1+ mentions.

http://www.mssm.edu/research/programs/manhattan-hiv-brain-bank/

Biorepository of tissues and fluids relevant for the neurologic, neuropsychologic, psychiatric and neuropathologic manifestations of HIV infection, linked to medical records and an on-going clinical trial for research use by the scientific community. The MHBB conducts a longitudinal, observational study that follows a group of HIV-infected individuals who have agreed to be fluid and organ donors for the purposes of AIDS research. They are currently the largest, multidisciplinary neuroAIDS cohort in New York City, the epicenter of the US HIV epidemic. Research participants undergo regular neurologic, neuropsychologic, and psychiatric evaluations, and provide body fluid samples that are linked to clinical information. Upon their demise, study participants become organ donors. This program has supplied clinical information, tissue, and fluid samples to over 70 qualified AIDS researchers across America, Europe and Australia. In fulfilling its resource mission, the MHBB functions as part of the National NeuroAIDS Tissue Consortium (NNTC). MHBB provides a means by which people living with HIV can be engaged in the struggle to improve our knowledge about HIV infection and the damage it causes to the body.

Proper citation: Manhattan HIV Brain Bank (RRID:SCR_010520) Copy   


http://med.stanford.edu/narcolepsy.html

The Stanford Center for Narcolepsy was established in the 1980s as part of the Department of Psychiatry and Behavioral Sciences. Today, it is the world leader in narcolepsy research with more than 100 articles on narcolepsy to its name. The Stanford Center for Narcolepsy was the first to report that narcolepsy-cataplexy is caused by hypocretin (orexin) abnormalities in both animal models and humans. Under the direction of Drs. Emmanuel Mignot and Seiji Nishino, the Stanford Center for Narcolepsy today treats several hundred patients with the disorder each year, many of whom participate in various research protocols. Other research protocols are conducted in animal models of narcolespy. We are always looking for volunteers in our narcolepsy research studies. We are presently recruiting narcoleptic patients for genetic studies, drug clinical trials, hypocretin measurement studies in the CSF and functional MRI studies. Monetary gifts to the Center for Narcolepsy are welcome. If you wish to make the ultimate gift, please consider participating in our Brain Donation Program. To advance our understanding of the cause, course, and treatment of narcolepsy, in 2001 Stanford University started a program to obtain human brain tissue for use in narcolepsy research. Donated brains provide an invaluable resource and we have already used previously donated brains to demonstrate that narcolepsy is caused by a lack of a very specific type of cell in the brain, the hypocretin (orexin) neuron. While the brain donations do not directly help the donor, they provide an invaluable resource and a gift to others. The real answers as to what causes or occurrs in the brain when one has narcolepsy will only be definitively understood through the study of brain tissue. Through these precious donations, narcolepsy may eventually be prevented or reversible. We currently are seeking brains from people with narcolepsy (with cataplexy and without), idiopathic hypersomnia and controls or people without a diagnosed sleep disorder of excessive sleepiness. Control brains are quite important to research, as findings must always be compared to tissue of a non-affected person. Friends and loved ones of people who suffer with narcoleps may wish to donate to our program to help fill this very important need. Refer to the Movies tab for movies of Narcolepsy / Cataplexy.

Proper citation: Stanford Center for Narcolepsy (RRID:SCR_007021) Copy   


https://confluence.crbs.ucsd.edu/display/NIF/StemCellInfo

Data tables providing an overview of information about stem cells that have been derived from mice and humans. The tables summarize published research that characterizes cells that are capable of developing into cells of multiple germ layers (i.e., multipotent or pluripotent) or that can generate the differentiated cell types of another tissue (i.e., plasticity) such as a bone marrow cell becoming a neuronal cell. The tables do not include information about cells considered progenitor or precursor cells or those that can proliferate without the demonstrated ability to generate cell types of other tissues. The tables list the tissue from which the cells were derived, the types of cells that developed, the conditions under which differentiation occurred, the methods by which the cells were characterized, and the primary references for the information.

Proper citation: National Institutes of Health Stem Cell Tables (RRID:SCR_008359) Copy   


  • RRID:SCR_013700

    This resource has 100+ mentions.

https://www.nanomaterialregistry.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 9,2023. Registry that archives curated nanomaterial research data and their biological and environmental implications. The Registry provides data management plans for researchers, and accepts users' public-ready data, archive them, integrate them into the registry, allowing for the data to be shared publicly. Users can request more information on specific nanomaterial records, compare multiple nanomaterials, and export data to their desktop.

Proper citation: Nanomaterial Registry (RRID:SCR_013700) Copy   


https://astrocyte.rnaseq.sofroniewlab.neurobio.ucla.edu

Database containing information about RNA-sequencing and astrocyte reactivity. Searching a gene through this engine provides differential expression data for various experimental conditions.

Proper citation: Astrocyte Reactivity RNA-Seq Browser (RRID:SCR_015033) Copy   


http://www.lamhdi.org/

THIS RESOURCE IS NO LONGER IN SERVICE, it has been replaced by Monarch Initiative. LAMHDI, the initiative to Link Animal Models to Human DIsease, is designed to accelerate the research process by providing biomedical researchers with a simple, comprehensive Web-based resource to find the best animal model for their research. LAMDHI is a free, Web-based, resource to help researchers bridge the gap between bench testing and human trials. It provides a free, unbiased resource that enables scientists to quickly find the best animal models for their research studies. LAMHDI includes mouse data from MGI, the Mouse Genome Informatics website; zebrafish data from ZFIN, the Zebrafish Model Organism Database; rat data from RGD, the Rat Genome Database; yeast data from SGD, the Saccharomyces Genome Database; and fly data from FlyBase. LAMHDI.org is operational today, and data is added regularly. Enhancements are planned to let researchers contribute their knowledge of the animal models available through LAMHDI. The LAMHDI goal is to allow researchers to share information about and access to animal models so they can refine research and testing, and reduce or replace the use of animal models where possible. LAMHDI Database Search: LAMHDI brings together scientifically validated information from various sources to create a composite multi-species database of animal models of human disease. To do this, the LAMHDI database is prepared from a variety of sources. The LAMHDI team takes publicly available data from OMIM, NCBI''s Entrez Gene database, Homologene, and WikiPathways, and builds a mathematical graph (think of it as a map or a web) that links these data together. OMIM is used to link human diseases with specific human genes, and Entrez provides universal identifiers for each of those genes. Human genes are linked to their counterpart genes in other species with Homologene, and those genes are linked to other genes tentatively or authoritatively using the data in WikiPathways. This preparatory work gives LAMHDI a web of human diseases linked to specific human genes, orthologous human genes, homologous genes in other species, and both human and non-human genes involved in specific metabolic pathways associated with those diseases. LAMHDI includes model data that partners provide directly from their data structures. For instance, MGI provides information about mouse models, including a disease for each model, as well as some genetic information (the ID of the model, in fact, identifies one or more genes). ZFIN provides genetic information for each zebrafish model, but no diseases, so zebrafish models are integrated by using the genes as the glue. For instance, a zebrafish model built to feature the zebrafish PKD2 gene would plug into the larger disease-gene map at the node representing the zebrafish PKD2 gene, which is connected to the node representing the human PKD2 gene, which in turn is connected to the node representing the human disease known as polycystic kidney disease. (Some of the partner data LAMHDI receives can even extend the base map. MGI provides a disease for every model, and in some cases this allows the creation of a disease-to-gene relationship in the LAMHDI database that might not already be documented in the OMIM dataset.) With curatorial and model information in hand, LAMHDI runs a lengthy automated process that exhaustively searches for every possible path between each model and each disease in the data, up to a set number of hops, producing for each disease-to-model pair a set of links from the disease to the model. The algorithm avoids circular paths and paths that include more than one disease anywhere in the middle of the path. At the end of this phase, LAMHDI has a comprehensive set of paths representing all the disease-to-model relationships in the data, varying in length from one hop to many hops. Each disease-to-model path is essentially a string of nodes in the data, where each node represents a disease, a gene, a linkage between genes (an orthologue, a homologue, or a pathway connection, referred to as a gene cluster or association), or a model. Each node has a human-friendly label, a set of terms and keywords, and - in most cases - a URL linking the node to the data source where it originated. When a researcher submits a search on the LAMHDI website, LAMHDI searches for the user''s search terms in its precomputed list of all known disease-to-model paths. It looks for the terms not only in the disease and model nodes, but also in every node along each path. The complete set of hits may include multiple paths between any given disease-to-model pair of endpoints. Each of these disease-to-model pair sets is ordered by the number of hops it involves, and the one involving the fewest hops is chosen to represent its respective disease-to-model pair in the search results presented to the user. Results are sorted by scores that represent their matches. The number of hops is one barometer of the strength of the evidence linking the model and the disease; fewer hops indicates the relationship is stronger, more hops indicates it may be weaker. This indicator works best for comparing models from a single partner dataset: MGI explicitly identifies a disease for each mouse model, so there can be disease-to-model hits for mice that involve just one hop. Because ZFIN does not explicitly identify a disease for each model, no zebrafish model will involve fewer than four hops to the nearest disease, from the zebrafish model to a zebrafish gene to a gene cluster to a human gene to a human disease.

Proper citation: LAMHDI: The Initiative to Link Animal Models to Human DIsease (RRID:SCR_008643) Copy   


  • RRID:SCR_010489

    This resource has 1+ mentions.

https://www.tycho.pitt.edu/

Database to advance the availability and use of public health data for science and policy making that includes data from all weekly notifiable disease reports for the United States dating back to 1888. Additional U.S. and international data will be released twice yearly.

Proper citation: Project Tycho (RRID:SCR_010489) Copy   


http://www.asn-online.org/

Society leading the fight against kidney disease by educating health professionals, sharing new knowledge, advancing research, and advocating the highest quality care for patients. To accomplish its mission, ASN will: # Educate health professionals by increasing the value of ASN education. # Share new knowledge by improving the quality and expanding the reach of ASN''s communications, including maintaining the premier publications in kidney disease. # Promote the highest quality care by serving as the professional organization informing health policy in kidney disease. # Advance patient care and research in kidney disease by strengthening the pipeline of clinicians, researchers, and educators. To accomplish this goal, ASN will: ## Implement a strategy to increase interest in nephrology careers, which includes promoting diversity within the nephrology workforce. ## Help fund travel to ASN educational activities for physicians and researchers training in the field of kidney disease. ## Use the ASN Grants Program to support outstanding research and foster career development. # Continue to bolster the ASN infrastructure, which includes: ## Increasing diversityincluding age and experience, ethnicity, and genderat all levels of the society. ## Providing avenues for helping ASN members facilitate professional exchange. ## Expanding ASN membership. ## Increasing the ASN Council-Designated Endowment Fund (independent of operational budget) to support grants and other priorities

Proper citation: ASN - American Society of Nephrology (RRID:SCR_006709) Copy   


https://mctfr.psych.umn.edu/

Composed of many projects, including the Minnesota Twin Family Study (MTFS) and The Sibling Interaction and Behavior Study (SIBS), this research center seeks to identify genetic and environmental influences on development and psychological traits. Both projects are longitudinal research studies including twins, siblings, and parents. Over 9800 individuals have contributed to these exciting projects! By studying twins and siblings and their families, we can estimate how genes and environment interact to influence character, strengths, vulnerabilities and values. Participants in the MTFS include families with same-sex identical or fraternal twins who were born in Minnesota. The SIBS study is comprised of adoptive and biological siblings and their parents. Most participants partake in day-long visits to the MCTFR, and due to the longitudinal nature of our projects, they return every 3-4 years for follow-up visits.

Proper citation: Minnesota Center for Twin and Family Research (RRID:SCR_006948) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005787

    This resource has 1+ mentions.

http://umbbd.msi.umn.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2014. Database containing information on microbial biocatalytic reactions and biodegradation pathways for primarily xenobiotic, chemical compounds. Its goal is to provide information on microbial enzyme-catalyzed reactions that are important for biotechnology. The reactions covered are studied for basic understanding of nature, biocatalysis leading to specialty chemical manufacture, and biodegradation of environmental pollutants. Individual reactions and metabolic pathways are presented with information on the starting and intermediate chemical compounds, the organisms that transform the compounds, the enzymes, and the genes. The present database has been successfully used to teach enzymology and use of biochemical Internet information resources to advanced undergraduate and graduate students, and is being expanded primarily with the help of such students. In addition to reactions and pathways, this database also contains Biochemical Periodic Tables and a Pathway Prediction System. * Search the UM-BBD for compound, enzyme, microorganism, pathway, or BT rule name; chemical formula; chemical structure; CAS Registry Number; or EC code. * Go to Pathways and Metapathways in the UM-BBD * Lists of 203 pathways; 1400 reactions; 1296 compounds; 916 enzymes; 510 microorganism entries; 245 biotransformation rules; 50 organic functional groups; 76 reactions of naphthalene 1,2-dioxygenase; 109 reactions of toluene dioxygenase; Graphical UM-BBD Overview; and Other Graphics (Metapathway and Pathway Maps and Reaction Mechanisms).

Proper citation: UM-BBD (RRID:SCR_005787) Copy   


  • RRID:SCR_005780

    This resource has 10000+ mentions.

Ratings or validation data are available for this resource

http://genome.ucsc.edu/

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy   


http://science.education.nih.gov/home2.nsf/feature/index.htm

The NIH Office of Science Education (OSE) coordinates science education activities at the NIH and develops and sponsors science education projects in house. These programs serve elementary, secondary, and college students and teachers and the public. Activities * Develop curriculum supplements and other educational materials related to medicine and research through collaborations with scientific experts at NIH * Maintain a website as a central source of information about NIH science education resources * Establish national model programs in public science education, such as the NIH Mini-Med School and Science in the Cinema * Promote science education reform as outlined in the National Science Education Standards and related guidelines The OSE was established in 1991 within the Office of Science Policy of the Office of the Director of the National Institutes of Health. The NIH is the world''s foremost biomedical research center and the U.S. federal government''s focal point for such research. It is one of the components of the Department of Health and Human Services (HHS). The Office of Science Education (OSE) plans, develops, and coordinates a comprehensive science education program to strengthen and enhance efforts of the NIH to attract young people to biomedical and behavioral science careers and to improve science literacy in both adults and children. The function of the Office is as follows: (1) develops, supports, and directs new program initiatives at all levels with special emphasis on targeting students in grades kindergarten to 16, their educators and parents, and the general public; (2) advises NIH leadership on science education issues; (3) examines and evaluates research and emerging trends in science education and literacy for policy making; (4) works closely with the NIH extramural, intramural, women''s health, laboratory animal research, and minority program offices on science education special issues and programs to ensure coordination of NIH efforts; (5) works with NIH institutes, centers, and divisions to enhance communication of science education activities; and (6) works cooperatively with other public- and private-sector organizations to develop and coordinate activities.

Proper citation: NIH Office of Science Education (RRID:SCR_005603) Copy   


http://www.esourceresearch.org/

Inside e-Source you will find 20 interactive chapters with authoritative answers to methodological questions on behavioral and social science research. With contributions from a team of international experts, this anthology provides the latest information on addressing emerging challenges in public health. Book contents include: Setting the Scene, Describing How, Explaining Why, What Works, Emerging Issues. Tables, Figures, Exercises and Examples are included. Login for enhanced functionality. Contents: * Appropriate Research Methods * ''Science'' in the Social Sciences * Design Decisions in Research * Theory Development * Social and Behavioral Theories * Sample Surveys * Social Survey Data Collection * Administrative Data Systems * Observational Studies * Qualitative Methods * Conversation Analysis * Software and Qualitative Analysis * Clinical Trials * Cluster Unit Randomized Trials * Ethical Challenges * Multilevel Modeling * Objective Measurement of Subjective Phenomena * Measuring Socioeconomic Status * Evaluating the Quality of Health Care * Patient-Reported Outcomes

Proper citation: e-Source: Behavioral and Social Sciences Research (RRID:SCR_005627) Copy   


http://grants.nih.gov/podcasts/All_About_Grants/index.htm

The Office of Extramural Research (OER) presents conversations with NIH staff members. Designed for investigators, fellows, students, research administrators, and others, we provide insights on grant topics from those who live and breathe the information. In mp3 and updated monthly. Transcripts are also available. So You Wanna... Keep Up with What''''s Hot? Prepare a Successful Grant Application? Suggest a Topic? Understand How Your Grant is Reviewed? Be an NIH Investigator?

Proper citation: All About Grants Podcast (RRID:SCR_005621) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   


http://www.zebrafinch.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. Project to advance understanding of the neural mechanisms of vocal learning by providing a quantitative description of the relationship between physiological variables and vocal performance over the course of development in a songbird, the zebra finch. They propose to study vocal learning dynamically across neuronal and peripheral subsystems, using a novel collaborative approach that will harness the combined expertise of several investigators. Their proposed research model will 1) provide simultaneous measurements of acoustic, articulatory and electrophysiological data that will document the detailed dynamics of the vocal imitation process in a standardized learning paradigm; and 2) incorporate these measurements into a theoretical/computational framework that simultaneously provides a phenomenological description and attempts to elucidate the mechanistic basis of the learning process.

Proper citation: Zebra Finch Song Learning Consortium (RRID:SCR_006356) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X