Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Center that facilitates the optimal use of nonhuman primate models in biomedical research by identifying, developing, characterizing and producing reagents for monitoring or modulating immune responses. They distribute non-human primate-specific antibodies for in vitro diagnostics, as well as develop and produce primate recombinant antibodies for in vivo cell depletion or modulating immune responses.
Proper citation: Nonhuman Primate Reagent Resource (RRID:SCR_012986) Copy
Online database for finding and analyzing syntenic regions across multiple genomes and measuring the extent of genome rearrangement using reversal distance as a measure.
Proper citation: Cinteny (RRID:SCR_002147) Copy
Database of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus including information about genes and proteins of Aspergillus nidulans and Aspergillus fumigatus; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Sgenus species. Also available are Gene Ontology (GO) and community resources. Based on the Candida Genome Database, the Aspergillus Genome Database is a resource for genomic sequence data and gene and protein information for Aspergilli. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). Search options allow you to: *Search AspGD database using keywords. *Find chromosomal features that match specific properties or annotations. *Find AspGD web pages using keywords located on the page. *Find information on one gene from many databases. *Search for keywords related to a phenotype (e.g., conidiation), an allele (such as veA1), or an experimental condition (e.g., light). Analysis and Tools allow you to: *Find similarities between a sequence of interest and Aspergillus DNA or protein sequences. *Display and analyze an Aspergillus sequence (or other sequence) in many ways. *Navigate the chromosomes set. View nucleotide and protein sequence. *Find short DNA/protein sequence matches in Aspergillus. *Design sequencing and PCR primers for Aspergillus or other input sequences. *Display the restriction map for a Aspergillus or other input sequence. *Find similarities between a sequence of interest and fungal nucleotide or protein sequences. AspGD welcomes data submissions.
Proper citation: ASPGD (RRID:SCR_002047) Copy
https://med.stanford.edu/sfgf.html
Stanford Genomics formerly Stanford Functional Genomics Facility provides services for high throughput sequencing, single cell assays, gene expression and genotyping studies utilizing microarray and real time PCR, and related services. High throughput sequencing (Illumina HiSeq 4000, NextSeq 500, MiSeq and MiniSeq), microarray gene expression and genotyping services (Affymetrix, Agilent and Illumina). Provides 24/7 access to instruments, equipment and software utilized within genomics field.
Proper citation: Stanford Genomics Service Center Core Facility (RRID:SCR_002050) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.
Proper citation: Macaque.org (RRID:SCR_002767) Copy
https://github.com/sokrypton/ColabFold
Software application offers accelerated prediction of protein structures and complexes by combining homology search of MMseqs2 with AlphaFold2 or RoseTTAFold. Used for protein folding.
Proper citation: ColabFold (RRID:SCR_025453) Copy
https://repository.niddk.nih.gov/study/21
Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.
Proper citation: Type 1 Diabetes Genetics Consortium (RRID:SCR_001557) Copy
http://www.immunetolerance.org/
International clinical research consortium dedicated to the clinical evaluation of novel tolerogenic approaches for the treatment of autoimmune diseases, asthma and allergic diseases, and the prevention of graft rejection. They aim to advance the clinical application of immune tolerance by performing high quality clinical trials of emerging therapeutics integrated with mechanism-based research. In particular, they aim to: * Establish new tolerance therapeutics * Develop a better understanding of the mechanisms of immune function and disease pathogenesis * Identify new biomarkers of tolerance and disease Their goals are to identify and develop treatment game changers for tolerance modulating therapies for the treatment of immune mediated diseases and disabling conditions, and to conduct high quality, innovative clinical trials and mechanistic studies not likely to be funded by other sources or to be conducted by private industry that advance our understanding of immunological disorders. In the Immune Tolerance Network's (ITN) unique hybrid academic/industry model, the areas of academia, government and industry are integral to planning and conducting clinical studies. They develop and fund clinical trials and mechanistic studies in partnership. Their development model is a unique, interactive process. It capitalizes on their wide-ranging, multidisciplinary expertise provided by an advisory board of highly respected faculty from institutions worldwide. This model gives investigators special insight into developing high quality research studies. The ITN is comprised of leading scientific and medical faculty from more than 50 institutions in nine countries worldwide and employs over 80 full-time staff at the University of California San Francisco (UCSF), Bethesda, Maryland and Benaroya Research Institute in Seattle, Washington.
Proper citation: Immune Tolerance Network (ITN) (RRID:SCR_001535) Copy
http://pathema.jcvi.org/Pathema/index.html
Pathema is one of the eight Bioinformatics Resource Centers designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms. The Pathema BRC contract ends in December 2009. At that time JCVI will cease maintenance of the Pathema web resource and data. The PATRIC team, located at the Virginia Bioinformatics Institute, created and maintains a consolidated BRC for all of the NIAID category A-C priority pathogenic bacteria. The EuPathDB team at the University of Pennsylvania will support all eukaryotic pathogens. Pathema transferred all data and software to PATRIC and EuPathDB for incorporation into their new Web-based bioinformatics resource.
Proper citation: Pathema (RRID:SCR_010585) Copy
https://github.com/taborlab/FlowCal
Open source software tool for automatically converting flow cytometry data from arbitrary to calibrated units. Can be run using intuitive Microsoft Excel interface, or customizable Python scripts. Software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Automatically gates data, calculates common statistics, and produces plots.
Proper citation: FlowCal (RRID:SCR_018140) Copy
http://www.patricbrc.org/portal/portal/patric/Home
A Bioinformatics Resource Center bacterial bioinformatics database and analysis resource that provides researchers with an online resource that stores and integrates a variety of data types (e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data) and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. The PATRIC project includes three primary collaborators: the University of Chicago, the University of Manchester, and New City Media. The University of Chicago is providing genome annotations and a PATRIC end-user genome annotation service using their Rapid Annotation using Subsystem Technology (RAST) system. The National Centre for Text Mining (NaCTeM) at the University of Manchester is providing literature-based text mining capability and service. New City Media is providing assistance in website interface development. An FTP server and download tool are available.
Proper citation: Pathosystems Resource Integration Center (RRID:SCR_004154) Copy
http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
Database of all of the publicly available, complete prokaryotic genomes. In addition to having all of the organisms on a single website, common data types across all genomes in the CMR make searches more meaningful, and cross genome analysis highlight differences and similarities between the genomes. CMR offers a wide variety of tools and resources, all of which are available off of our menu bar at the top of each page. Below is an explanation and link for each of these menu options. * Genome Tools: Find organism lists as well as summary information and analyses for selected genomes. * Searches: Search CMR for genes, genomes, sequence regions, and evidence. * Comparative Tools: Compare multiple genomes based on a variety of criteria, including sequence homology and gene attributes. SNP data is also found under this menu. * Lists: Select and download gene, evidence, and genomic element lists. * Downloads: Download gene sequences or attributes for CMR organisms, or go to our FTP site. * Carts: Select genome preferences from our Genome Cart or download your Gene Cart genes. The Omniome is the relational database underlying the CMR and it holds all of the annotation for each of the CMR genomes, including DNA sequences, proteins, RNA genes and many other types of features. Associated with each of these DNA features in the Omniome are the feature coordinates, nucleotide and protein sequences (where appropriate), and the DNA molecule and organism with which the feature is associated. Also available are evidence types associated with annotation such as HMMs, BLAST, InterPro, COG, and Prosite, as well as individual gene attributes. In addition, the database stores identifiers from other centers such as GenBank and SwissProt, as well as manually curated information on each genome or each DNA molecule including website links. Also stored in the Omniome are precomputed homology data, called All vs All searches, used throughout the CMR for comparative analysis.
Proper citation: JCVI CMR (RRID:SCR_005398) Copy
The Hepatitis C Virus (HCV) Database Project strives to present HCV-associated genetic and immunologic data in a user-friendly way, by providing access to the central database via web-accessible search interfaces and supplying a number of analysis tools.
Proper citation: HCV Databases (RRID:SCR_002863) Copy
https://evidencemodeler.github.io/
Software tool for automated eukaryotic gene structure annotation that reports eukaryotic gene structures as weighted consensus of all available evidence. Used to combine ab intio gene predictions and protein and transcript alignments into weighted consensus gene structures. Inputs include genome sequence, gene predictions, and alignment data (in GFF3 format).
Proper citation: EVidenceModeler (RRID:SCR_014659) Copy
https://github.com/EpistasisLab/ReBATE
Open source software Python package to compare relief based feature selection algorithms used in data mining. Used for feature selection in any bioinformatics problem with potentially predictive features and target outcome variable, to detect feature interactions without examination of all feature combinations, to detect features involved in heterogeneous patterns of association such as genetic heterogeneity .
Proper citation: ReBATE (RRID:SCR_017139) Copy
https://bioconductor.org/packages/release/bioc/html/Maaslin2.html
SoftwareR package that identifies microbial taxa correlated with factors of interest using generalized linear models and mixed models.Used for efficiently determining multivariable association between clinical metadata and microbial meta'omic features.
Proper citation: MaAsLin2 (RRID:SCR_023241) Copy
http://www.broad.mit.edu/annotation/fungi/fgi/
Produces and analyzes sequence data from fungal organisms that are important to medicine, agriculture and industry. The FGI is a partnership between the Broad Institute and the wider fungal research community, with the selection of target genomes governed by a steering committee of fungal scientists. Organisms are selected for sequencing as part of a cohesive strategy that considers the value of data from each organism, given their role in basic research, health, agriculture and industry, as well as their value in comparative genomics.
Proper citation: Fungal Genome Initiative (RRID:SCR_003169) Copy
https://www.niaid.nih.gov/diseases-conditions/coronaviruses
Information about coronaviruses, including COVID-19. NIAID provides research funding and resources for scientific community to facilitate development of vaccines, therapeutics, and diagnostics for infectious diseases, including those caused by coronaviruses.
Proper citation: NIAID Overview of Coronaviruses (RRID:SCR_018290) Copy
https://gitlab.com/gernerlab/cytomap/-/wikis/home
Software tool as spatial analysis software for whole tissue sections.Utilizes information on cell type and position to phenotype local neighborhoods and reveal how their spatial distribution leads to generation of global tissue architecture.Used to make advanced data analytic techniques accessible for single cell data with position information.
Proper citation: CytoMAP (RRID:SCR_021227) Copy
miniTUBA is a web-based modeling system that allows clinical and biomedical researchers to perform complex medical/clinical inference and prediction using dynamic Bayesian network analysis with temporal datasets. The software allows users to choose different analysis parameters (e.g. Markov lags and prior topology), and continuously update their data and refine their results. miniTUBA can make temporal predictions to suggest interventions based on an automated learning process pipeline using all data provided. Preliminary tests using synthetic data and laboratory research data indicate that miniTUBA accurately identifies regulatory network structures from temporal data. miniTUBA represents in a network view possible influences that occur between time varying variables in your dataset. For these networks of influence, miniTUBA predicts time courses of disease progression or response to therapies. minTUBA offers a probabilistic framework that is suitable for medical inference in datasets that are noisy. It conducts simulations and learning processes for predictive outcomes. The DBN analysis conducted by miniTUBA describes from variables that you specify how multiple measures at different time points in various variables influence each other. The DBN analysis then finds the probability of the model that best fits the data. A DBN analysis runs every combination of all the data; it examines a large space of possible relationships between variables, including linear, non-linear, and multi-state relationships; and it creates chains of causation, suggesting a sequence of events required to produce a particular outcome. Such chains of causation networks - are difficult to extract using other machine learning techniques. DBN then scores the resulting networks and ranks them in terms of how much structured information they contain compared to all possible models of the data. Models that fit well have higher scores. Output of a miniTUBA analysis provides the ten top-scoring networks of interacting influences that may be predictive of both disease progression and the impact of clinical interventions and probability tables for interpreting results. The DBN analysis that miniTUBA provides is especially good for biomedical experiments or clinical studies in which you collect data different time intervals. Applications of miniTUBA to biomedical problems include analyses of biomarkers and clinical datasets and other cases described on the miniTUBA website. To run a DBN with miniTUBA, you can set a number of parameters and constrain results by modifying structural priors (i.e. forcing or forbidding certain connections so that direction of influence reflects actual biological relationships). You can specify how to group variables into bins for analysis (called discretizing) and set the DBN execution time. You can also set and re-set the time lag to use in the analysis between the start of an event and the observation of its effect, and you can select to analyze only particular subsets of variables.
Proper citation: miniTUBA (RRID:SCR_003447) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.