Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nia.nih.gov/research/scientific-resources
A resource that provides information on the vast number of resources available from the National Institute of Aging. NIA maintains approximately 150 primates (Macaca mulatta) at four regional primate centers where aging-related research is conducted. NIA also maintains colonies of aged rats and mice that are used for age-related disease research. This resource supports a multi-institutional study, the Interventions Testing Program (ITP), that investigates diets and dietary supplements that extend lifespan, delay disease and avoid dysfunction. NIA is also in charge of a microarray facility which provides filter arrays of 17,000 mouse cDNA clone sets that were developed at the NIA Intramural Research Program Laboratory of Genetics. NIA supports studies that provide biospecimens that can be shared for later research. This resource also helps the C. elegans Genetic Center at the University of Minnesota, which contains 1,000 strains of C. elegans that can be used for aging studies. This resource also provides a searchable database for epidemiological research on aging. There is access to social and behavioral research materials, including books on aging and health, from the research was conducted and supported by NIA. There are links to federal web sites that are further resources for aging research that were supported by NIA.
Proper citation: NIA Scientific Resources (RRID:SCR_008269) Copy
http://www.vet.ohio-state.edu/211.htm
Laboratory animals are used in nearly half of all research projects supported by the National Institutes of Health. Significant needs exist at the national level for skilled scientists trained to work with and interpret the data generated from the use of rodent animal models. In response to this national need a research training program has been established through funding by the National Centers for Research Resources to provide an environment for veterinarians (D.V.M. or V.M.D.) and D.V.M./Ph.D.''s to effectively utilize mouse models of human disease. Specifically, veterinarian scientists are trained in state of-the-art molecular and cellular techniques to systematically evaluate the mechanistic pathobiology and phenotype of experimental mouse models of human disease. The training program is coordinated through an established graduate program in the College of Veterinary Medicine, Department of VeterinaryBiosciences and supported by a unified group of basic and clinical scientists with ongoing collaborative programs at The Ohio State University and Children''s Hospital. The scientists have expertise in endocrinology, infectious disease, genetics, oncology, molecular biology, immunology, physiology, biochemistry, and pathology. Trainees gain knowledge and skills to fully understand and evaluate pathophysiologic alterations of murine models of human disease through both didactic coursework and applied training in pathology and molecular biology. In addition, trainees interact with our multidisciplinary faculty to identify the range of research problems that use murine models. They acquaint themselves with the ongoing basic and clinical research studies in the laboratories and clinical sites of the participating faculty, and select a research problem that utilizes a murine model for endpoint evaluation. Following the selection of a preceptor and research problem, the trainee participates in the design and performance of experiments, as well as analysis and presentation of data regarding a murine model. Trainees develop skills in clinical, gross, and histologic pathology, molecular and immunologic techniques, and use transgenic and immunodeficient mouse models to identify and characterize alterations in embryonic and postnatal development. Therefore, trainees acquire a broad background in molecular biology, genetics, pathology, laboratory animal medicine, as well as research design methodology to fulfill national needs in the development of skilled scientists in mouse pathobiology. :Sponsors: Mouse Pathology Training Grant is funded by the National Centers for Research Resources.
Proper citation: Mouse Pathology Training Grant (RRID:SCR_008300) Copy
A portal to educate, engage and create an online community. The Fisher Center for Alzheimer''s Research Foundation, founded in 1995, was created in answer to the recommendations of three U.S. Senate commissioned symposia held in the 1990s by the National Institutes of Health (NIH) to gather information on the cause, care and cure of Alzheimer''s disease. The Fisher Center was created following this design. The funding initiatives of the Foundation are appropriated accordingly to the three areas cited by the NIH task force cause, care and cure. The primary resources of the Foundation are directed toward scientific research into the cause and hopefully the cure of Alzheimer''s disease. To this end, the Foundation under the direction of its founder, Zachary Fisher, and in collaboration with David Rockefeller, constructed the Fisher Center for Alzheimer''s Disease Research at The Rockefeller University, headed by 2000 Nobel Prize winner, Paul Greengard, Ph.D. The 10,000 square foot laboratory is the most advanced facility of its kind in the country equipped with the latest in equipment necessary to undertake an interdisciplinary assault on this disease. The Fisher Center also has collaborative programs at the University of Genoa and supports the work of well over 60 scientists and researchers across the United States and in 17 foreign countries. The Foundation also funds projects for the care of people with Alzheimer''s disease and their caregivers. The Fisher Alzheimer''s Disease Education and Resources Program at the New York University School of Medicine was established under the direction of Barry Reisberg, M.D., internationally known expert in the care of Alzheimer''s patients. The Foundations Alzheimer''s Information Program was created in 2001 to answer the primary need of caregivers for comprehensive, easily accessible information. Our goals are to: Understand the Cause of Alzheimer''s To find a Cure for this devastating disease Improve the Care of people living with the disease to enhance their quality of life and that of their caregivers and families About Our Research Beating Back Beta Amyloid Improving the Quality of Life for Alzheimers Patients Reversing Nerve Cell Damage Using Hormones to Slow the Progress of Disease Curing Early-Onset Alzheimers The Science of Caregiving Scientific Studies
Proper citation: Fisher Center For Alzheimers Research Foundation: ALZinfo.org (RRID:SCR_008255) Copy
http://ophid.utoronto.ca/navigator/
A software package for visualizing and analyzing protein-protein interaction networks. NAViGaTOR can query OPHID / I2D - online databases of interaction data - and display networks in 2D or 3D. To improve scalability and performance, NAViGaTOR combines Java with OpenGL to provide a 2D/3D visualization system on multiple hardware platforms. NAViGaTOR also provides analytical capabilities and supports standard import and export formats such as GO and the Proteomics Standards Initiative (PSI). NAViGaTOR can be installed and run on Microsoft Windows, Linux / UNIX, and Mac OS systems. NAViGaTOR is written in Java and uses JOGL (Java bindings for OpenGL) to support scalability, highlighting or suppressing of information, and other advanced graphic approaches.
Proper citation: Network Analysis, Visualization and Graphing TORonto (RRID:SCR_008373) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. Vision Science is a large discipline at the ANU that is found in several teaching and research faculties and several large research institutes. About 85 research staff participate in all forms of vision science from machine vision, to neurophysiology, behaviour and cognition. The scale of analysis ranges from molecular to systems approaches and covers insect, vertebrate and human visual systems. Topics such as disease and development of the human visual system are also covered. CVS works to connect and sustain the component parts of the ANU vision science community.
Proper citation: Centre for Visual Sciences (RRID:SCR_008324) Copy
http://www.bitlifesciences.com
Information and human resource exchange services for academia and industries, professional and commercial societies from major industrial sectors and academic organizations. Events: Annual Drug Discovery Science & Technology (IDDST), World DNA and Genome Day celebrating the discovery of DNA double helix structure, Life science Forum, World AIDS Day, Pepcon Conference, iBio and World Cancer Congress.
Proper citation: BIT Life Sciences (RRID:SCR_008313) Copy
http://brainconnection.positscience.com/
An educational site providing accessible information about how the brain works and how people learn
Proper citation: Brain Connection (RRID:SCR_008315) Copy
http://degradome.uniovi.es/diseases.html
This resource has cataloged a total of 80 human hereditary diseases caused by mutations in protease-coding genes, which implies that more than 10% of the human protease genes are involved in human pathologies. They are classified in three groups: loss of function, gain of function, and an heterogeneous group including non-protease homologs (np), putative proteases, and hedgehog proteins with only autoprocessing activity. Type of inheritance is indicated by R (recessive) or D (dominant).
Proper citation: Human Hereditary Diseases of Proteolysis (RRID:SCR_008344) Copy
https://github.com/aarac/DeepBehavior
Software toolbox that automates taking high speed quality video to track behavior to analyze and track behavior in rodents and humans.
Proper citation: DeepBehavior (RRID:SCR_021414) Copy
http://www.semel.ucla.edu/creativity/
The purpose of this center is to study the molecular, cellular, systems and cognitive mechanisms that result in cognitive enhancements and explain unusual levels of performance in gifted individuals, including extraordinary creativity. Additionally, by understating the mechanisms responsible for enhancements in performance we may be better suited to intervene and reverse disease states that result in cognitive deficits. One of the key topics addressed by the Center is the biological basis of cognitive enhancements, a topic that can be studied in human subjects and animal models. In the past much of the focus in the brain sciences has been on the study of brain mechanisms that degrade cognitive performance (for example, on mutations or other lesions that cause cognitive deficits). The Tennenbaum Center for the Biology of Creativity at UCLA enables an interdisciplinary team of leading scientists to advance knowledge about the biological bases of creativity. Starting with a pilot project program, a series of investigations was launched, spanning disciplines from basic molecular biology to cognitive neuroscience. Because the concept of creativity is multifaceted, initial efforts targeted refinement of the component processes necessary to generate novel, useful cognitive products. The identified core cognitive processes: 1.) Novelty Generation the ability to flexibly and adaptively generate products that are unique; 2.) Working Memory and Declarative Memory the ability to maintain, and then use relevant information to guide goal-directed performance, along with the capacity to store and retrieve this information; and 3.) Response Inhibition the ability to suppress habitual plans and substitute alternate actions in line with changing problem-solving demands. To study the basic mechanisms underlying these complex brain functions we use translational strategies. Starting from foundational studies in basic neuroscience, we forged an interdisciplinary strategy that permits the most advanced techniques for genetic manipulation and basic neurobiological research to be applied in close collaboration with human studies that converge on the same core cognitive processes. Our integrated research program aims to reveal the genetic architecture and fundamental brain mechanisms underlying creative cognition. The work holds enormous promise for both enhancing healthy cognitive performance and designing new treatments for diverse cognitive disorders. Sponsors: The Tennenbaum Center for the Biology of Creativity was inspired by the vision and generosity of Michael Tennenbaum.
Proper citation: Tennenbaum Center for the Biology of Creativity (RRID:SCR_000668) Copy
A software program that allows users to visualize and interpret human metabolim and expression profiling data by providing users with a bioinformatics framework. Its features include bulding and analyzing networks of genes and compounds, identifying enriched pathways from expression profiling data, and visualizing changes in metabolite data.
Proper citation: Metscape (RRID:SCR_014687) Copy
CRBS is a UCSD organized research unit (ORU) that exists to provide human resources, high technology equipment, and administrative services to researchers engaged in fundamental research on cell structure and function relationships in central nervous system processes, cardiovascular networking, and muscular contraction through multiple scales and modalities. CRBS scientists investigate these processes through invention, refinement, and deployment of sophisticated technologies, especially: - High-powered electron microscopes that reveal three-dimensional cell structures - State-of-the-art X-ray crystallography and magnetic resonance analysis that provide detail on protein structures at high-resolution - Laser-scanning and confocal light microscopes that reveal molecules tagged with fluorescent markers as they traffic within cells and pass transfer signals within and between cells - High performance computing and grid-based integration of distributed data CRBS facilitates an interdisciplinary infrastructure in which people from biology, medicine, chemistry, and physics can work with those from computer science and information technologies in collaborative research. Researchers share interests in the study of complex biological systems at many scales, from the structures of enzymes, proteins, and the body's chemical communications network at atomic and molecular levels, to an organism's physiology, strength, and support at cellular and tissue levels. The CRBS infrastructure integrates resources for high-performance computing, visualization, and database technologies, and the grid-integration of large amounts of archival storage data. The California Institute for Telecommunications and Information Technology (Cal-IT2) and the San Diego Supercomputer Center (SDSC) are collaborators in simulating the activity of biological systems, analyzing the results, and organizing the growing storehouse of biological information. CRBS is an entity evolving as research evolves. It forges interactions with biotechnology and biocomputing companies for technology transfer. Interaction, collaboration, and multiscale research produce new perspectives, reveal fruitful research topics, lead to the development of new technologies and drugs, and train a new generation of researchers in biological systems. Sponsors: CRBS is supported by the University of California at San Diego.
Proper citation: Center for Research in Biological Systems (RRID:SCR_002666) Copy
http://stemcells.nih.gov/research/registry/
A listing of human embryonic cell lines that are eligible for use in NIH funded research. Those lines that carry disease-specific mutations are noted as such under the line name. Total Eligible Lines = 200. The purpose of the Registry is to provide investigators with: # a unique NIH Code for each cell line that must be used when applying for NIH funding and # contact information to facilitate investigators' acquisition of stem cells. Before submitting a new grant application and supporting materials for consideration of a human embryonic stem cell line, scientists may wish to see what lines are already under consideration: * Human embryonic stem cell lines submitted to NIH that are being reviewed to determine if they may be used in NIH-supported research, http://grants.nih.gov/stem_cells/registry/pending.htm President George W. Bush required that the name of the registry be changed in his Executive Order #13435, issued on June 20, 2007. As a result of this Executive Order, the former National Institutes of Health Human Embryonic Stem Cell Registry will now be called the National Institutes of Health Human Pluripotent Stem Cell Registry. The registry will now include both human embryonic stem cells that were derived consistent with the President's policy of August 9, 2001 and human pluripotent stem cells derived from non-embryonic sources.
Proper citation: NIH Human Pluripotent Stem Cell Registry (RRID:SCR_003149) Copy
http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm
High-resolution atlas template of the human cerebellum and brainstem, based on the anatomy of 20 young healthy individuals. The atlas is spatially unbiased, i.e. the location of each structure is equal to the expected location of that structure across individuals in MNI space. At the same time, the new template preserves the anatomical detail of cerebellar structures through a nonlinear atlas-generation algorithm. By using automated nonlinear normalization methods, a more accurate intersubject-alignment than current whole-brain methods can be achieved. The toolbox allows you to: * Automatically isolate cerebellar structures from the cerebral cortex based on an anatomical image * Achieve accurate anatomical normalization of cerebellar structures * Normalize functional imaging data for fMRI group analysis * Normalize focal cerebellar lesions for lesion-symptom mapping * Use Voxel-based morphometry (VBM) to determine patterns of cerebellar degeneration or growth * Use a probabilisitc atlas in SUIT space to assign locations to different cerebellar lobuli in an unbiased and informed way * Automatically define ROIs for specific cerebellar lobuli and summarize function and anatomical data * Improve normalization of the deep cerebellar nuclei using an ROI-driven normalization. The suit-toolbox requires Matlab (Version 6.5 and higher) and SPM. The newest version only supports SPM8, although it likely runs under SPM2 or 5 as well. A standalone version for the suit-toolbox is not planned. Usage of the isolation or normalization functions, however, does not require that the analysis is conducted under SPM.
Proper citation: Spatially unbiased atlas template of the cerebellum and brainstem (RRID:SCR_004969) Copy
Platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data extracted from published articles. It''s a website wrapped around a set of open-source Python and JavaScript packages. Neurosynth lets you run crude but useful analyses of fMRI data on a very large scale. You can: * Interactively visualize the results of over 3,000 term-based meta-analyses * Select specific locations in the human brain and view associated terms * Browse through the nearly 10,000 studies in the database Their ultimate goal is to enable dynamic real-time analysis, so that you''ll be able to select foci, tables, or entire studies for analysis and run a full-blown meta-analysis without leaving your browser. You''ll also be able to do things like upload entirely new images and obtain probabilistic estimates of the cognitive states most likely to be associated with the image.
Proper citation: NeuroSynth (RRID:SCR_006798) Copy
http://blocks.fhcrc.org/blocks/codehop.html
This COnsensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) strategy has been implemented as a computer program that is accessible over the World-Wide Web and is directly linked from the BlockMaker multiple sequence alignment site for hybrid primer prediction beginning with a set of related protein sequences. This is a new primer design strategy for PCR amplification of unknown targets that are related to multiply-aligned protein sequences. Each primer consists of a short 3' degenerate core region and a longer 5' consensus clamp region. Only 3-4 highly conserved amino acid residues are necessary for design of the core, which is stabilized by the clamp during annealing to template molecules. During later rounds of amplification, the non-degenerate clamp permits stable annealing to product molecules. The researchers demonstrate the practical utility of this hybrid primer method by detection of diverse reverse transcriptase-like genes in a human genome, and by detection of C5 DNA methyltransferase homologs in various plant DNAs. In each case, amplified products were sufficiently pure to be cloned without gel fractionation. Sponsors: This work was supported in part by a grant from the M. J. Murdock Charitable Trust and by a grant from NIH. S. P. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.
Proper citation: COnsensus-DEgenerate Hybride Oligonucleotide Primers (RRID:SCR_002875) Copy
An integrated resource for genomics and bioinformatics in vision research including expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. The data can be interrogated in several ways. Specific gene names can be entered into the search window. Alternatively, regions of the genome can be displayed. For example, entering two STS markers separated by a semicolon (e.g. RH18061;RH80175) allows the display of the entire chromosomal region associated with the mapping of a specific disease locus. ESTs for each tissue can then be displayed to help in the selection of candidate genes. In addition, sequences can be entered into a BLAST search and rapidly aligned on the genome, again showing eye derived ESTs for the same region. To see the same region at the full UCSC site, cut and paste the location from the position window of the genome browser. EyeBrowse includes a custom track display SAGE data for human eye tissues derived from the EyeSAGE project. The track shows the normalized sum of SAGE tag counts from all published eye-related SAGE datasets centered on the position of each identifiable Unigene cluster. This indicates relative activity of each gene locus in eye. Clicking on the vertical count bar for a particular location will bring up a display listing gene details and linking to specific SAGE counts for each eye SAGE library and comparisons with normalized sums for neural and non-neural tissues. To view or alter settings for the EyeSAGE track on EyeBrowse, click on the vertical gray bar at the left of the display. Other custom tracks display known eye disease genes and mapped intervals for candidate loci for retinal disease, cataract, myopia and cornea disease. These link back to further information at NEIBank.
Proper citation: NEIBank (RRID:SCR_007294) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.
Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy
Network helps to organize and support collaborative research related to loss of functional beta cell mass in Type 1 Diabetes (T1D). Project consists of four independent research initiatives: Consortium on Beta Cell Death and Survival (CBDS), Consortium on Human Islet Biomimetics (CHIB), Consortium on Modeling Autoimmune Interactions (CMAI), Consortium on Targeting and Regeneration (CTAR), and Human Pancreas Analysis Program (HPAP).
Proper citation: Human Islet Research Network (HIRN) (RRID:SCR_014393) Copy
http://sonorus.princeton.edu/hefalmp/
HEFalMp (Human Experimental/FunctionAL MaPper) is a tool developed by Curtis Huttenhower in Olga Troyanskaya's lab at Princeton University. It was created to allow interactive exploration of functional maps. Functional mapping analyzes portions of these networks related to user-specified groups of genes and biological processes and displays the results as probabilities (for individual genes), functional association p-values (for groups of genes), or graphically (as an interaction network). HEFalMp contains information from roughly 15,000 microarray conditions, over 15,000 publications on genetic and physical protein interactions, and several types of DNA and protein sequence analyses and allows the exploration of over 200 H. sapiens process-specific functional relationship networks, including a global, process-independent network capturing the most general functional relationships. Looking to download functional maps? Keep an eye on the bottom of each page of results: every functional map of any kind is generated with a Download link at the bottom right. Most functional maps are provided as tab-delimited text to simplify downstream processing; graphical interaction networks are provided as Support Vector Graphics files, which can be viewed using the Adobe Viewer, any recent version of Firefox, or the excellent open source Inkscape tool.
Proper citation: Human Experimental/FunctionAL MaPper: Providing Functional Maps of the Human Genome (RRID:SCR_003506) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.