Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://kt.ijs.si/software/SEGS/
A web tool for descriptive analysis of microarray data. The analysis is performed by looking for descriptions of gene sets that are statistically significantly over- or under-expressed between different scenarios within the context of a genome-scale experiments (DNA microarray). Descriptions are defined by using the terms from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene-gene interactions found in the ENTREZ database. Gene annotations by GO and KEGG terms can also be found in the ENTREZ database. The tool provides three procedures for testing the enrichment of the gene sets (over- or under-expressed): Fisher's exact test, GSEA and PAGE, and option for combining the results of the tests. Because of the multiple-hypothesis testing nature of the problem, all the p-values are computed using the permutation testing method.
Proper citation: SEGS (RRID:SCR_003554) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented September 2, 2016. Database for defining official rat gene symbols. It includes rat gene symbols from three major sources: the Rat Genome Database (RGD), Ensembl, and NCBI-Gene. All rat symbols are compared with official symbols from orthologous human genes as specified by the Human Gene Nomenclature Committee (HGNC). Based on the outcome of the comparisons, a rat gene symbol may be selected. Rat symbols that do not match a human ortholog undergo a strict procedure of comparisons between the different rat gene sources as well as with the Mouse Genome Database (MGD). For each rat gene this procedure results in an unambiguous gene designation. The designation is presented as a status level that accompanies every rat gene symbol suggested in the database. The status level describes both how a rat symbol was selected, and its validity. Rat Gene Symbol Tracker approves rat gene symbols by an automatic procedure. The rat genes are presented with links to RGD, Ensembl, NCBI Gene, MGI and HGNC. RGST ensures that each acclaimed rat gene symbol is unique and follows the guidelines given by the RGNC. To each symbol a status level associated, describing the gene naming process.
Proper citation: Rat Gene Symbol Tracker (RRID:SCR_003261) Copy
http://bioinfo.mbi.ucla.edu/ASAP/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. Database to access and mine alternative splicing information coming from genomics and proteomics based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. They developed an automated method for discovering human tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs), which involves classifying human EST libraries according to tissue categories and Bayesian statistical analysis. They use the UniGene clusters of human Expressed Sequence Tags (ESTs) to identify splices. The UniGene EST's are clustered so that a single cluster roughly corresponds to a gene (or at least a part of a gene). A single EST represents a portion of a processed (already spliced) mRNA. A given cluster contains many ESTs, each representing an outcome of a series of splicing events. The ESTs in UniGene contain the different mRNA isoforms transcribed from an alternatively spliced gene. They are not predicting alternative splicing, but locating it based on EST analysis. The discovered splices are further analyzed to determine alternative splicing events. They have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with 2.1 million human mRNA and EST sequences, they mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. After constructing a tissue list of 46 human tissues with 2 million human ESTs, they generated a database of novel human alternative splices that is four times larger than our previous report, and used Bayesian statistics to compare the relative abundance of every pair of alternative splices in these tissues. Using several statistical criteria for tissue specificity, they have identified 667 tissue-specific alternative splicing relationships and analyzed their distribution in human tissues. They have validated our results by comparison with independent studies. This genome-wide analysis of tissue specificity of alternative splicing will provide a useful resource to study the tissue-specific functions of transcripts and the association of tissue-specific variants with human diseases.
Proper citation: ASAP: the Alternative Splicing Annotation Project (RRID:SCR_003415) Copy
Database that catalogs experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. It is an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, it also includes antifungal compounds and their target genes. Each entry is curated by domain experts and is supported by strong experimental evidence (gene disruption experiments, STM etc), as well as literature references in which the original experiments are described. Each gene is presented with its nucleotide and deduced amino acid sequence, as well as a detailed description of the predicted protein's function during the host infection process. To facilitate data interoperability, genes have been annotated using controlled vocabularies and links to external sources (Gene Ontology terms, EC Numbers, NCBI taxonomy, EMBL, PubMed and FRAC).
Proper citation: PHI-base (RRID:SCR_003331) Copy
One of the key challenges in the analysis of gene expression data is how to relate the expression level of individual genes to the underlying transcriptional programs and cellular state. The T-profiler tool hosted on this website uses the t-test to score changes in the average activity of pre-defined groups of genes. The gene groups are defined based on Gene Ontology categorization, ChIP-chip experiments, upstream matches to a consensus transcription factor binding motif, and location on the same chromosome, respectively. If desired, an iterative procedure can be used to select a single, optimal representative from sets of overlapping gene groups. A jack-knife procedure is used to make calculations more robust against outliers. T-profiler makes it possible to interpret microarray data in a way that is both intuitive and statistically rigorous, without the need to combine experiments or choose parameters. Currently, gene expression data from Saccharomyces cerevisiae and Candida albicans are supported. Users can submit their microarray data for analysis by clicking on one of the two organism-specific tabs above. Platform: Online tool
Proper citation: T-profiler (RRID:SCR_003452) Copy
Web server based on the Enhancer Identification (EI) method, to determine the chromosomal location and functional characteristics of distant regulatory elements (REs) in higher eukaryotic genomes. The server uses gene co-expression data, comparative genomics, and combinatorics of transcription factor binding sites (TFBSs) to find TFBS-association signatures that can be used for discriminating specific regulatory functions. DiRE's unique feature is the detection of REs outside of proximal promoter regions, as it takes advantage of the full gene locus to conduct the search. DiRE can predict common REs for any set of input genes for which the user has prior knowledge of co-expression, co-function, or other biologically meaningful grouping. The server predicts function-specific REs consisting of clusters of specifically-associated TFBSs, and it also scores the association of individual TFs with the biological function shared by the group of input genes. Its integration with the Array2BIO server allows users to start their analysis with raw microarray expression data.
Proper citation: Distant Regulatory Elements (RRID:SCR_003058) Copy
Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.
Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy
A manually curated resource of signal transduction pathways in humans. All pathways are freely available for download in BioPAX level 3.0, PSI-MI version 2.5 and SBML version 2.1 formats. The slim pathway models representing only core reactions in each pathway are available at NetSlim. All the NetPath pathway models are also submitted to WikiPathways., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: NetPath (RRID:SCR_003567) Copy
http://exac.broadinstitute.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. An aggregated data platform for genome sequencing data created by a coalition of investigators seeking to aggregate and harmonize exome sequencing data from a variety of large-scale sequencing projects, and to make summary data available for the wider scientific community. The data set provided on this website spans 61,486 unrelated individuals sequenced as part of various disease-specific and population genetic studies. They have removed individuals affected by severe pediatric disease, so this data set should serve as a useful reference set of allele frequencies for severe disease studies. All of the raw data from these projects have been reprocessed through the same pipeline, and jointly variant-called to increase consistency across projects. They ask that you not publish global (genome-wide) analyses of these data until after the ExAC flagship paper has been published, estimated to be in early 2015. If you''re uncertain which category your analyses fall into, please email them. The aggregation and release of summary data from the exomes collected by the Exome Aggregation Consortium has been approved by the Partners IRB (protocol 2013P001477, Genomic approaches to gene discovery in rare neuromuscular diseases).
Proper citation: ExAc (RRID:SCR_004068) Copy
An information management framework for comprehensive ion channel information. It is a knowledge base system centered on genetically expressed ion channel models and it encourages researchers of the field to contribute, build and refine the information through an interactive wiki-like interface. It is web-based, freely accessible and currently contains 187 annotated ion channels with 50 Hodgkin-Huxley models (September 2014). Channelepdia provides an ideal platform to collectively build ion channel knowledge base by accommodating both structured and unstructured data. The current version of Channelpedia contains the following sections : Introduction, Genes, Ontologies, Interactions, Structure, Expression, Distribution, Function, Kinetics and Models. Newly published literature related to ion channels is automatically queried every week from PubMed and added to respective categories. Currently, Channelpedia contains ~180,000 abstracts related to ion channels from Pubmed.
Proper citation: ChannelPedia (RRID:SCR_003807) Copy
A web-based tool to support meta-analysis of multiple gene-expression data sets, as well as to enable integration of data sets from gene expression and metabolomics experiments. INMEX contains three functional modules. The data preparation module supports flexible data processing, annotation and visualization of individual data sets. The statistical analysis module allows researchers to combine multiple data sets based on P-values, effect sizes, rank orders and other features. The significant genes can be examined in functional analysis module for enriched Gene Ontology terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, or expression profile visualization. INMEX has built-in support for common gene/metabolite identifiers (IDs), as well as 45 popular microarray platforms for human, mouse and rat. Complex operations are performed through a user-friendly web interface in a step-by-step manner.
Proper citation: INMEX (RRID:SCR_004173) Copy
A database of genomic and protein data for Drosophila site-specific transcription factors.
Proper citation: FlyTF.org (RRID:SCR_004123) Copy
https://scicrunch.org/scicrunch/data/source/nlx_154697-4/search?q=*
Virtual database indexing brain region gene expression data from mice from: Gene Expression Nervous System Atlas (GENSAT), Allen Mouse Brain Atlas, and Mouse Genome Institute (MGI).
Proper citation: Integrated Brain Gene Expression (RRID:SCR_004197) Copy
THIS RESOURCE IS NO LONGER IN SERVICE; REPLACED BY NEPHROSEQ; A growing database of publicly available renal gene expression profiles, a sophisticated analysis engine, and a powerful web application designed for data mining and visualization of gene expression. It provides unique access to datasets from the Personalized Molecular Nephrology Research Laboratory incorporating clinical data which is often difficult to collect from public sources and mouse data.
Proper citation: Nephromine (RRID:SCR_003813) Copy
http://life.ccs.miami.edu/life/
LIFE search engine contains data generated from LINCS Pilot Phase, to integrate LINCS content leveraging semantic knowledge model and common LINCS metadata standards. LIFE makes LINCS content discoverable and includes aggregate results linked to Harvard Medical School and Broad Institute and other LINCS centers, who provide more information including experimental conditions and raw data. Please visit LINCS Data Portal.
Proper citation: LINCS Information Framework (RRID:SCR_003937) Copy
http://www.broadinstitute.org/mmgp/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 6, 2023. Database providing access and limited analysis to the MMGP portal data sets. These include the MMRC funded reference array comparative genomic hybridization (aCGH) and gene expression data and additional public multiple myeloma datasets. The MMGP will be updated with new features such as additional data and analysis tools as they become available.
Proper citation: Multiple Myeloma Genomics Portal (RRID:SCR_003722) Copy
http://www.hgsc.bcm.tmc.edu/content/hapmap-3-and-encode-3
Draft release 3 for genome-wide SNP genotyping and targeted sequencing in DNA samples from a variety of human populations (sometimes referred to as the HapMap 3 samples). This release contains the following data: * SNP genotype data generated from 1184 samples, collected using two platforms: the Illumina Human1M (by the Wellcome Trust Sanger Institute) and the Affymetrix SNP 6.0 (by the Broad Institute). Data from the two platforms have been merged for this release. * PCR-based resequencing data (by Baylor College of Medicine Human Genome Sequencing Center) across ten 100-kb regions (collectively referred to as ENCODE 3) in 712 samples. Since this is a draft release, please check this site regularly for updates and new releases. The HapMap 3 sample collection comprises 1,301 samples (including the original 270 samples used in Phase I and II of the International HapMap Project) from 11 populations, listed below alphabetically by their 3-letter labels. Five of the ten ENCODE 3 regions overlap with the HapMap-ENCODE regions; the other five are regions selected at random from the ENCODE target regions (excluding the 10 HapMap-ENCODE regions). All ENCODE 3 regions are 100-kb in size, and are centered within each respective ENCODE region. The HapMap 3 and ENCORE 3 data are downloadable from the ftp site.
Proper citation: HapMap 3 and ENCODE 3 (RRID:SCR_004563) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016. Search engine that integrates over 100 curated and publicly contributed data sources and provides integrated views on the genomic, proteomic, transcriptomic, genetic and functional information currently available. Information featured in the database includes gene function, orthologies, gene expression, pathways and protein-protein interactions, mutations and SNPs, disease relationships, related drugs and compounds.
Proper citation: IntegromeDB (RRID:SCR_004620) Copy
A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.
Proper citation: SGD (RRID:SCR_004694) Copy
https://reich.hms.harvard.edu/software
Software application that finds skews in ancestry that are potentially associated with disease genes in recently mixed populations like African Americans. It can be downloaded for either UNIX or Linux.
Proper citation: Ancestrymap (RRID:SCR_004353) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.