Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
DNAtraffic database is dedicated to be an unique comprehensive and richly annotated database of genome dynamics during the cell life. DNAtraffic contains extensive data on the nomenclature, ontology, structure and function of proteins related to control of the DNA integrity mechanisms such as chromatin remodeling, DNA repair and damage response pathways from eight model organisms commonly used in the DNA-related study: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on diseases related to the assembled human proteins. Database is richly annotated in the systemic information on the nomenclature, chemistry and structure of the DNA damage and drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA metabolism pathway analysis. Database includes illustrations of pathway, damage, protein and drug. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines it has to be extensively linked to numerous external data sources. Database represents the result of the manual annotation work aimed at making the DNAtraffic database much more useful for a wide range of systems biology applications. DNAtraffic database is freely available and can be queried by the name of DNA network process, DNA damage, protein, disease, and drug.
Proper citation: DNAtraffic (RRID:SCR_008886) Copy
http://www.bioinformatics.org/go2msig/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on April 24, 2020. Software tool as automated Gene Ontology based multi species gene set generator for gene set enrichment analysis. Used to generate gene sets required for Gene Set Enrichment Analysis for almost any organism for which GO term association data exists.
Gene set collections can be automatically created for wide variety of species.
Proper citation: GO2MSIG (RRID:SCR_018359) Copy
Curated protein-protein and genetic interaction repository of raw protein and genetic interactions from major model organism species, with data compiled through comprehensive curation efforts.
Proper citation: Biological General Repository for Interaction Datasets (BioGRID) (RRID:SCR_007393) Copy
A database of three-dimensional structural information about nucleic acids and their complexes. In addition to primary data, it contains derived geometric data, classifications of structures and motifs, standards for describing nucleic acid features, as well as tools and software for the analysis of nucleic acids. A variety of search capabilities are available, as are many different types of reports. NDB maintains the macromolecular Crystallographic Information File (mmCIF).
Proper citation: Nucleic Acid Database (RRID:SCR_003255) Copy
http://www.ncbi.nlm.nih.gov/RefSeq/
Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.
Proper citation: RefSeq (RRID:SCR_003496) Copy
Database with annotations for human variation data with protein structural information and other functionally relevant information, if available. The mutations are organized by gene.
Proper citation: MutDB (RRID:SCR_003251) Copy
http://compbio.uthsc.edu/miRSNP/
Database of naturally occurring DNA variations in microRNA (miRNA) seed regions and miRNA target sites. MicroRNAs pair to the transcripts of protein-coding genes and cause translational repression or mRNA destabilization. SNPs and INDELs in miRNAs and their target sites may affect miRNA-mRNA interaction, and hence affect miRNA-mediated gene repression. The PolymiRTS database was created by scanning 3'UTRs of mRNAs in human and mouse for SNPs and INDELs in miRNA target sites. Then, the potential downstream effects of these polymorphisms on gene expression and higher-order phenotypes are identified. Specifically, genes containing PolymiRTSs, cis-acting expression QTLs, and physiological QTLs in mouse and the results of genome-wide association studies (GWAS) of human traits and diseases are linked in the database. The PolymiRTS database also includes polymorphisms in target sites that have been supported by a variety of experimental methods and polymorphisms in miRNA seed regions.
Proper citation: PolymiRTS (RRID:SCR_003389) Copy
Database that catalogs experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. It is an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, it also includes antifungal compounds and their target genes. Each entry is curated by domain experts and is supported by strong experimental evidence (gene disruption experiments, STM etc), as well as literature references in which the original experiments are described. Each gene is presented with its nucleotide and deduced amino acid sequence, as well as a detailed description of the predicted protein's function during the host infection process. To facilitate data interoperability, genes have been annotated using controlled vocabularies and links to external sources (Gene Ontology terms, EC Numbers, NCBI taxonomy, EMBL, PubMed and FRAC).
Proper citation: PHI-base (RRID:SCR_003331) Copy
Database containing information on marketed medicines and their recorded adverse drug reactions. The information is extracted from public documents and package inserts. The available information include side effect frequency, drug and side effect classifications as well as links to further information, for example drug-target relations. The SIDER Side Effect Resource represents an effort to aggregate dispersed public information on side effects. To our knowledge, no such resource exist in machine-readable form despite the importance of research on drugs and their effects. The creation of this resource was motivated by the many requests for data that we received related to our paper (Campillos, Kuhn et al., Science, 2008, 321(5886):263-6.) on the utilization of side effects for drug target prediction. Inclusion of side effects as readouts for drug treatment should have many applications and we hope to be able to enhance the respective research with this resource. You may browse the drugs by name, browse the side effects by name, download the current version of SIDER, or use the search interface.
Proper citation: SIDER (RRID:SCR_004321) Copy
http://www.uniprot.org/taxonomy/
NEWT is the taxonomy database maintained by the UniProt group. It integrates taxonomy data compiled in the NCBI database and data specific to the UniProt Knowledgebase. Browse by hierarchy, List all, or Complete proteomes. Organisms are classified in a hierarchical tree structure. Our taxonomy database contains every node (taxon) of the tree. UniProtKB taxonomy data is manually curated: next to manually verified organism names, we provide a selection of external links, organism strains and viral host information. Species with protein sequences stored in the UniProt Knowledgebase are named according to UniProt nomenclature. We endeavour to maintain a list of manually curated species names for which protein sequence data is available. In particular, we have adopted a systematic convention for naming viral and bacterial strains and isolates. Links to external sites are chosen by the UniProt taxonomy team and show pictures and various scientific data of interest (taxonomy, biology, physiology,...).
Proper citation: NEWT (RRID:SCR_004477) Copy
Database of positive selection based on a rigorous branch-site specific likelihood test. Positive selection is detected using CODEML on all branches of animal gene trees.
Proper citation: Selectome: a Database of Positive Selection (RRID:SCR_004542) Copy
http://www.ebi.ac.uk/biosamples/
Database that aggregates sample information for reference samples (e.g. Coriell Cell lines) and samples for which data exist in one of the EBI''''s assay databases such as ArrayExpress, the European Nucleotide Archive or PRoteomics Identificates DatabasE. It provides links to assays for specific samples, and accepts direct submissions of sample information. The goals of the BioSample Database include: # recording and linking of sample information consistently within EBI databases such as ENA, ArrayExpress and PRIDE; # minimizing data entry efforts for EBI database submitters by enabling submitting sample descriptions once and referencing them later in data submissions to assay databases and # supporting cross database queries by sample characteristics. The database includes a growing set of reference samples, such as cell lines, which are repeatedly used in experiments and can be easily referenced from any database by their accession numbers. Accession numbers for the reference samples will be exchanged with a similar database at NCBI. The samples in the database can be queried by their attributes, such as sample types, disease names or sample providers. A simple tab-delimited format facilitates submissions of sample information to the database, initially via email to biosamples (at) ebi.ac.uk. Current data sources: * European Nucleotide Archive (424,811 samples) * PRIDE (17,001 samples) * ArrayExpress (1,187,884 samples) * ENCODE cell lines (119 samples) * CORIELL cell lines (27,002 samples) * Thousand Genome (2,628 samples) * HapMap (1,417 samples) * IMSR (248,660 samples)
Proper citation: BioSample Database at EBI (RRID:SCR_004856) Copy
A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.
Proper citation: SGD (RRID:SCR_004694) Copy
A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).
Proper citation: Pfam (RRID:SCR_004726) Copy
http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi
A web server and database that organizes, analyzes and predicts interactions between proteins and other biomolecules. For a given protein sequence or structure query, it reports protein-protein, protein-small molecule, protein nucleic acids and protein-ion interactions observed in experimentally-determined structural biological assemblies. It also infers/predicts interacting partners and binding sites by homology, by inspecting the protein complexes formed by close homologs of a given query. To ensure biological relevance of inferred binding sites, the IBIS algorithm clusters binding sites formed by homologs based on binding site sequence and structure conservation.
Proper citation: IBIS: Inferred Biomolecular Interactions Server (RRID:SCR_004886) Copy
A clade oriented, community curated database containing genomic, genetic, phenotypic and taxonomic information for plant genomes. Genomic information is presented in a comparative format and tied to important plant model species such as Arabidopsis. SGN provides tools such as: BLAST searches, the SolCyc biochemical pathways database, a CAPS experiment designer, an intron detection tool, an advanced Alignment Analyzer, and a browser for phylogenetic trees. The SGN code and database are developed as an open source project, and is based on database schemas developed by the GMOD project and SGN-specific extensions.
Proper citation: SGN (RRID:SCR_004933) Copy
http://www.hpppi.iicb.res.in/btox/
Database of Bacterial ExoToxins for Human is a database of sequences, structures, interaction networks and analytical results for 229 exotoxins, from 26 different human pathogenic bacterial genus. All toxins are classified into 24 different Toxin classes. The aim of DBETH is to provide a comprehensive database for human pathogenic bacterial exotoxins. DBETH also provides a platform to its users to identify potential exotoxin like sequences through Homology based as well as Non-homology based methods. In homology based approach the users can identify potential exotoxin like sequences either running BLASTp against the toxin sequences or by running HMMER against toxin domains identified by DBETH from human pathogenic bacterial exotoxins. In Non-homology based part DBETH uses a machine learning approach to identify potential exotoxins (Toxin Prediction by Support Vector Machine based approach).
Proper citation: DBETH - Database for Bacterial ExoToxins for Humans (RRID:SCR_005908) Copy
http://www.gene-regulation.com/pub/databases.html#transfac
Manually curated database of eukaryotic transcription factors, their genomic binding sites and DNA binding profiles. Used to predict potential transcription factor binding sites.
Proper citation: TRANSFAC (RRID:SCR_005620) Copy
http://indel.bioinfo.sdu.edu.cn/gridsphere/gridsphere
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Indel Flanking Region Database is an online resource for indels and the flanking regions of proteins in SCOP superfamilies, including amino acid sequences, lengths, locations, secondary structure constitutions, hydrophilicity / hydrophobicity, domain information, 3D structures and so on. It aims at providing a comprehensive dataset for analyzing the qualities of amino acid insertion/deletions(indels), substitutions and the relationship between them. The indels were obtained through the pairwise alignment of homologous structures in SCOP superfamilies. The IndelFR database contains 2,925,017 indels with flanking regions extracted from 373,402 structural alignment pairs of 12,573 non-redundant domains from 1053 superfamilies. IndelFR has already been used for molecular evolution studies and may help to promote future functional studies of indels and their flanking regions.
Proper citation: IndelFR - Indel Flanking Region Database (RRID:SCR_006050) Copy
http://www.snpedia.com/index.php/SNPedia
Wiki investigating human genetics including information about the effects of variations in DNA, citing peer-reviewed scientific publications. It is used by Promethease to analyze and help explain your DNA. It is based on a wiki model in order to foster communication about genetic variation and to allow interested community members to help it evolve to become ever more relevant. As the cost of genotyping (and especially of fully determining your own genomic sequence) continues to drop, we''''ll all want to know more - a lot more - about the meaning of these DNA variations and SNPedia will be here to help. SNPedia has been launched to help realize the potential of the Human Genome Project to connect to our daily lives and well-being. For more information see the Wikipedia page, http://en.wikipedia.org/wiki/SNPedia * Download URL: http://www.SNPedia.com/index.php/Bulk * Web Service URL: http://bots.SNPedia.com/api.php
Proper citation: SNPedia (RRID:SCR_006125) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.