Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 16 showing 301 ~ 320 out of 569 results
Snippet view Table view Download 569 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002344

    This resource has 10000+ mentions.

http://www.ensembl.org/

Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.

Proper citation: Ensembl (RRID:SCR_002344) Copy   


  • RRID:SCR_002338

    This resource has 5000+ mentions.

http://www.ncbi.nlm.nih.gov/SNP/

Database as central repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms. Distinguishes report of how to assay SNP from use of that SNP with individuals and populations. This separation simplifies some issues of data representation. However, these initial reports describing how to assay SNP will often be accompanied by SNP experiments measuring allele occurrence in individuals and populations. Community can contribute to this resource.

Proper citation: dbSNP (RRID:SCR_002338) Copy   


  • RRID:SCR_002337

    This resource has 100+ mentions.

http://droog.gs.washington.edu/polyphred/

Software program that compares fluorescence-based sequences across traces obtained from different individuals to identify heterozygous sites for single nucleotide substitutions. Its functions are integrated with the use of three other programs: Phred (Brent Ewing and Phil Green), Phrap (Phil Green), and Consed (David Gordon and Phil Green). PolyPhred identifies potential heterozygotes using the base calls and peak information provided by Phred and the sequence alignments provided by Phrap. Potential heterozygotes identified by PolyPhred are marked for rapid inspection using the Consed tool.

Proper citation: PolyPhred (RRID:SCR_002337) Copy   


http://www.cmhd.ca/genetrap/

Generate gene trap insertions using mutagenic polyA trap vectors, followed by sequence tagging to develop a library of mutagenized ES cells freely available to the scientific community. This library is searchable by sequence or key word searches including gene name or symbol, chromosome location, or Gene Ontology (GO) terms. In addition,they offer a custom email alert service in which researchers are able to submit search criteria. Researchers will receive automated e-mail notification of matching gene trap clones as they are entered into the library and database. The resource features the use of complementary second and third generation polyA trap vectors developed by the Stanford lab and the laboratory of Professor Yasumasa Ishida of the Nara Institute of Science and Technology (NAIST) in Japan to mutagenize murine embryonic stem (ES) cells. CMHD gene trap clones are distributed by the Canadian Mouse Mutant Repository(CMMR). Information about ordering, services, and pricing can be found on their web site (http://www.cmmr.ca/services/index.html)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.

Proper citation: Centre for Modeling Human Disease Gene Trap Resource (RRID:SCR_002785) Copy   


http://camera.calit2.net/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 26, 2016; however, the URL provides links to associated projects and data. A suite of data query, download, upload, analysis and sharing tools serving the needs of the microbial ecology research community, and other scientists using metagenomics data.

Proper citation: Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis (RRID:SCR_002676) Copy   


  • RRID:SCR_000943

    This resource has 1+ mentions.

http://functionalbio.com/web/

A service that provides low cost DNA sequencing. They utilize microfluidic technology.

Proper citation: Functional Biosciences (RRID:SCR_000943) Copy   


  • RRID:SCR_001203

http://www.genoviewer.com/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Open source viewer / browser software for the SAM / BAM format commonly used in the assembly tasks of Next Generation Sequencing data.

Proper citation: GenoViewer (RRID:SCR_001203) Copy   


  • RRID:SCR_001196

http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/somaticcall-manual

Software program that finds single-base differences (substitutions) between sequence data from tumor and matched normal samples. It is designed to be highly stringent, so as to achieve a low false positive rate. It takes as input a BAM file for each sample, and produces as output a list of differences (somatic mutations). Note: This software package is no longer supported and information on this page is provided for archival purposes only.

Proper citation: SomaticCall (RRID:SCR_001196) Copy   


  • RRID:SCR_001194

    This resource has 1+ mentions.

http://www.bioinformatics.org/peakanalyzer/wiki/

A set of standalone software programs for the automated processing of any genomic loci, with an emphasis on datasets consisting of ChIP-derived signal peaks. The software is able to identify individual binding / modification sites from enrichment loci, retrieve peak region sequences for motif discovery, and integrate experimental data with different classes of annotated elements throughout the genome. PeakAnalyzer requires a peak file and a feature annotation file in BED or GTF format. Complete annotation files for the current builds of the human (HG19) and mouse (MM9) genomes are provided with the software distribution.

Proper citation: PeakAnalyzer (RRID:SCR_001194) Copy   


http://sfld.rbvi.ucsf.edu/

A database of hierarchical classification of enzymes that relates specific sequence-structure features to specific chemical capabilities. The SFLD classifies evolutionarily related enzymes according to shared chemical functions and maps these shared functions to conserved active site features. The classification is hierarchical, where broader levels encompass more distantly related proteins with fewer shared features. It thus serves as the analysis and archive site for superfamilies targeted by the Enzyme Function Initiative, and is developed by the Babbitt Laboratory in collaboration with the UCSF Resource for Biocomputing, Visualization, and Informatics. The resource also provides a collection of tools and data for investigating sequence-structure-function relationships and hypothesizing function.

Proper citation: Structure-function linkage database (RRID:SCR_001375) Copy   


  • RRID:SCR_001370

    This resource has 50+ mentions.

https://www.ddbj.nig.ac.jp/dra/index-e.html

Archive database for output data generated by next-generation sequencing machines including Roche 454 GS System, Illumina Genome Analyzer, Applied Biosystems SOLiD System, and others. DRA is a member of the International Nucleotide Sequence Database Collaboration (INSDC) and archiving the data in a close collaboration with NCBI Sequence Read Archive (SRA) and EBI Sequence Read Archive (ERA). Please submit the trace data from conventional capillary sequencers to DDBJ Trace Archive., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: DDBJ Sequence Read Archive (RRID:SCR_001370) Copy   


  • RRID:SCR_001570

    This resource has 1000+ mentions.

https://services.healthtech.dtu.dk/services/NetNGlyc-1.0/

Server that predicts N-Glycosylation sites in human proteins using artificial neural networks that examine the sequence context of Asn-Xaa-Ser/Thr sequons. NetNGlyc 1.0 is also available as a stand-alone software package, with the same functionality as the service above. Ready-to-ship packages exist for the most common UNIX platforms.

Proper citation: NetNGlyc (RRID:SCR_001570) Copy   


  • RRID:SCR_001605

    This resource has 100+ mentions.

https://services.healthtech.dtu.dk/services/YinOYang-1.2/

Server that produces neural network predictions for O-beta-GlcNAc attachment sites in eukaryotic protein sequences. This server can also use NetPhos, to mark possible phosphorylated sites and hence identify Yin-Yang sites. YinOYang 1.2 is available as a stand-alone software package, with the same functionality. Ready-to-ship packages exist for the most common UNIX platforms.

Proper citation: YinOYang (RRID:SCR_001605) Copy   


  • RRID:SCR_001591

    This resource has 5000+ mentions.

https://www.ebi.ac.uk/jdispatcher/msa/clustalo?stype=protein

Software package as multiple sequence alignment tool that uses seeded guide trees and HMM profile-profile techniques to generate alignments between three or more sequences. Accepts nucleic acid or protein sequences in multiple sequence formats NBRF/PIR, EMBL/UniProt, Pearson (FASTA), GDE, ALN/Clustal, GCG/MSF, RSF.

Proper citation: Clustal Omega (RRID:SCR_001591) Copy   


  • RRID:SCR_004362

    This resource has 10+ mentions.

http://virome.diagcomputing.org/#view=home

A web-application designed for scientific exploration of metagenome sequence data collected from viral assemblages occurring within a number of different environmental contexts. The VIROME informatics pipeline focuses on the classification of predicted open-reading frames (ORFs) from viral metagenomes. The portal allows you to submit your viral metagenome to be processed through the VIROME analysis pipeline, and enable you to investigate your data via the VIROME user interface., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: VIROME (RRID:SCR_004362) Copy   


  • RRID:SCR_004374

    This resource has 10+ mentions.

http://sequenceontology.org/

A collaborative ontology for the definition of sequence features used in biological sequence annotation. SO was initially developed by the Gene Ontology Consortium. Contributors to SO include the GMOD community, model organism database groups such as WormBase, FlyBase, Mouse Genome Informatics group, and institutes such as the Sanger Institute and the EBI. Input to SO is welcomed from the sequence annotation community. The OBO revision is available here: http://sourceforge.net/p/song/svn/HEAD/tree/ SO includes different kinds of features which can be located on the sequence. Biological features are those which are defined by their disposition to be involved in a biological process. Biomaterial features are those which are intended for use in an experiment such as aptamer and PCR_product. There are also experimental features which are the result of an experiment. SO also provides a rich set of attributes to describe these features such as polycistronic and maternally imprinted. The Sequence Ontologies use the OBO flat file format specification version 1.2, developed by the Gene Ontology Consortium. The ontology is also available in OWL from Open Biomedical Ontologies. This is updated nightly and may be slightly out of sync with the current obo file. An OWL version of the ontology is also available. The resolvable URI for the current version of SO is http://purl.obolibrary.org/obo/so.owl.

Proper citation: SO (RRID:SCR_004374) Copy   


  • RRID:SCR_004709

    This resource has 100+ mentions.

http://metagenomics.atc.tcs.com/binning/ProViDE/

A similarity based binning algorithm that uses a customized set of alignment parameter thresholds / ranges, specifically suited for the accurate taxonomic labelling of viral metagenomic sequences., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: ProViDE (RRID:SCR_004709) Copy   


http://caintegrator-info.nci.nih.gov/rembrandt

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 28,2023. REMBRANDT is a data repository containing diverse types of molecular research and clinical trials data related to brain cancers, including gliomas, along with a wide variety of web-based analysis tools that readily facilitate the understanding of critical correlations among the different data types. REMBRANDT aims to be the access portal for a national molecular, genetic, and clinical database of several thousand primary brain tumors that is fully open and accessible to all investigators (including intramural and extramural researchers), as well as the public at-large. The main focus is to molecularly characterize a large number of adult and pediatric primary brain tumors and to correlate those data with extensive retrospective and prospective clinical data. Specific data types hosted here are gene expression profiles, real time PCR assays, CGH and SNP array information, sequencing data, tissue array results and images, proteomic profiles, and patients'''' response to various treatments. Clinical trials'''' information and protocols are also accessible. The data can be downloaded as raw files containing all the information gathered through the primary experiments or can be mined using the informatics support provided. This comprehensive brain tumor data portal will allow for easy ad hoc querying across multiple domains, thus allowing physician-scientists to make the right decisions during patient treatments., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Repository of molecular brain neoplasia data (RRID:SCR_004704) Copy   


  • RRID:SCR_004650

    This resource has 10+ mentions.

http://www.aftol.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented Jan 13, 2022; To enhance the understanding of the evolution of the Kingdom Fungi, 1500+ species were sampled for eight gene loci across all major fungal clades, plus a subset of taxa for a suite of morphological and ultrastructural characters with resulting data: AFTOL Molecular Database (generated by WASABI - Web Accessible Sequence Analysis for Biological Inference), Blast search the AFTOL Database (generated by WASABI), AFTOL primers (generated by WASABI), AFTOL primers by species (generated by WASABI), AFTOL alignments, and the AFTOL Structural and Biochemical Database. Users may submit samples to the AFTOL project. AFTOL is a collaboration centered around four universities in the United States: Duke University (Francois Lutzoni and Rytas Vilgalys), Clark University (David Hibbett), Oregon State University (Joey Spatafora), and University of Minnesota (David McLaughlin). Participants throughout the world have donated vouchers, taxon samples, and gene sequences. The aim of the project is to reconstruct the fungal tree of life using all available data for eight loci (nuclear ribosomal DNA: LSU, SSU, ITS (including 5.8s, ITS1 and ITS2); RNA polymerase II: RPB1, RPB2; elongation factor 1-alpha; mitochondrial SSU rDNA, and mitochondrial ATP synthase protein subunit 6). A further objective of this study is to summarize and integrate current knowledge regarding fungal subcellular features within this new phylogenetic framework. The name of the bioinformatic package developed for AFTOL is WASABI which provides an efficient communication platform to facilitate the collection and dissemination of molecular data to (and from) the laboratories and participants. All molecular data can be viewed, downloaded, verified, and corrected by the participants of AFTOL. A central goal of the WASABI interface is to establish an automated analysis framework that includes basecalling of newly generated chromatograms, contig assembly, quality verification of sequences (including a local BLAST), sequence alignment, and congruence test. Gene sequences that pass all tests and are finally verified by their authors will undergo automated phylogenetic analysis on a regular schedule. Although all steps are initially carried out noninteractively, the users can verify and correct the results at any step and thus initiate the reanalysis of dependent data.

Proper citation: AFTOL (RRID:SCR_004650) Copy   


  • RRID:SCR_004862

    This resource has 1+ mentions.

http://metagenomics.atc.tcs.com/binning/DiScRIBinATE/

Software for accurate taxonomic classification of metagenomic sequences using a similarity based binning method. User needs to perform a similarity search of the input metagenomic sequences (reads) against the nr protein database using BLASTx search. The generated blastx output is then taken as the input by the DiScRIBinATE program.

Proper citation: DiScRIBinATE (RRID:SCR_004862) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X