Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Publicly available Web-based application that can perform QTL mapping on a variety of population types. GridQTL will extend the functionality of QTLExpress by adding new and advanced approaches for modelling QTL analysis in simple and complex populations. These new methods will be available on a Grid system that will offer flexible workflow management, resource allocation, data persistence, detached execution of simulations and the scalability required for the increase in data volume, data sources and complexity required by the new models. (entry from Genetic Analysis Software)
Proper citation: GRIDQTL (RRID:SCR_013397) Copy
http://vipbg.vcu.edu/vipbg/trimhap//
Software application for linkage disequilibrium mapping based on ancestral founder haplotypes. Method uses haplotype data from general pedigrees. (entry from Genetic Analysis Software)
Proper citation: TRIMHAP (RRID:SCR_013512) Copy
http://www.bio.unc.edu/faculty/vision/lab/mappop/
Software application that selects high resolution mapping subsamples and performs bin mapping (entry from Genetic Analysis Software)
Proper citation: MAPPOP (RRID:SCR_013490) Copy
http://dlin.web.unc.edu/software/SNPMStat/
A command-line program for the statistical analysis of SNP-disease association in case-control/cohort/cross-sectional studies with potentially missing genotype data. SNPMStat allows the user to estimate or test SNP effects and SNP-environment interactions by maximizing the (observed-data) likelihood that properly accounts for phase uncertainty, study design and gene-environment dependence. For SNPs without missing data, the program performs the standard association analysis. For typed SNPs with missing data or untyped SNPs, the program performs the maximum-likelihood analysis. (entry from Genetic Analysis Software)
Proper citation: SNPMSTAT (RRID:SCR_013339) Copy
http://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
Software application (entry from Genetic Analysis Software)
Proper citation: MECPM (RRID:SCR_013341) Copy
http://www.bios.unc.edu/~lin/software/MAOS/
Software application that implements valid and efficient statistical methods for meta-analysis of genomewide association studies with overlapping subjects. The current release performs logistic regression analysis of individual level data under the additive mode of inheritance. Data from genome-wide association studies are often analyzed jointly for the purposes of combining information from multiple studies of the same disease or comparing results across different disorders. In many instances, the same subjects appear in multiple studies. Failure to account for overlapping subjects can greatly inflate type I error when combining results from multiple studies of the same disease and can drastically reduce power when comparing results across different disorders. (entry from Genetic Analysis Software)
Proper citation: MAOS (RRID:SCR_013351) Copy
http://harvest.readthedocs.org/en/latest/content/harvest-tools.html
Software tools archiving and postprocessing for reference-compressed genomic multi-alignments. It is used for creating and interfacing with Gingr files, which are archives that the Harvest Suite uses to store reference-compressed multi-alignments, phylogenetic trees, filtered variants and annotations.
Proper citation: Harvest-tools (RRID:SCR_016132) Copy
https://cran.r-project.org/web/packages/ibdreg/index.html
Software package in S-PLUS and R to test genetic linkage with covariates by regression methods with response IBD sharing for relative pairs. Account for correlations of IBD statistics and covariates for relative pairs within the same pedigree. (entry from Genetic Analysis Software)
Proper citation: IBDREG (RRID:SCR_013127) Copy
Web portal for the administration of Norwegian e-Infrastructure for Life Sciences. Enables Norwegian life scientists and their international collaborators to store, share, archive, and analyse their genomics scale data. NeLS is one of the packages of the ELIXIR.NO project.
Proper citation: NeLS (RRID:SCR_016301) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
https://genomecenter.ucdavis.edu/core-facilities/
Genome Center uses technologies to understand how heritable genetic information of diverse organisms functions in health and disease. Provides research facilities, service cores, and staff for genomics research and training. Core facilities for Bioinformatics,DNA Technologies and Expression Analysis, Metabolomics, Proteomics,TILLING Core,Yeast One Hybrid Services Core.
Proper citation: UC Davis Genome Center Labs and Facilities (RRID:SCR_012480) Copy
http://www.daimi.au.dk/%7Emailund/SNPFile/
Software library and API for manipulating large SNP datasets with associated meta-data, such as marker names, marker locations, individuals'' phenotypes, etc. in an I/O efficient binary file format. In its core, SNPFile assumes very little about the metadata associated with markers and individuals, but leaves this up to application program protocols. (entry from Genetic Analysis Software)
Proper citation: SNPFILE (RRID:SCR_009402) Copy
https://atgu.mgh.harvard.edu/plinkseq/
An open-source C/C++ library for working with human genetic variation data. The specific focus is to provide a platform for analytic tool development for variation data from large-scale resequencing projects, particularly whole-exome and whole-genome studies. However, the library could in principle be applied to other types of genetic studies, including whole-genome association studies of common SNPs. (entry from Genetic Analysis Software)
Proper citation: PLINK/SEQ (RRID:SCR_013193) Copy
https://kidsfirstdrc.org/portal/portal-features/
Portal for analysis and interpretation of pediatric genomic and clinical data to advance personalized medicine for detection, therapy, and management of childhood cancer and structural birth defects. For patients, researchers, and clinicians to create centralized database of well curated clinical and genetic sequence data from patients with childhood cancer or structural birth defects.
Proper citation: Kids First Data Resource Portal (RRID:SCR_016493) Copy
https://satijalab.org/seurat/get_started.html
Software as R package designed for QC, analysis, and exploration of single cell RNA-seq data. Enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data.
Proper citation: Seurat (RRID:SCR_016341) Copy
Web service for permanent archiving and sharing of all types of personally identifiable genetic and phenotypic data resulting from biomedical research projects. The repository allows you to explore datasets from numerous genotype experiments, supplied by a range of data providers. The EGA''s role is to provide secure access to the data that otherwise could not be distributed to the research community. The EGA contains exclusive data collected from individuals whose consent agreements authorize data release only for specific research use or to bona fide researchers. Strict protocols govern how information is managed, stored and distributed by the EGA project. As an example, only members of the EGA team are allowed to process data in a secure computing facility. Once processed, all data are encrypted for dissemination and the encryption keys are delivered offline. The EGA also supports data access only for the consortium members prior to publication.
Proper citation: European Genome phenome Archive (RRID:SCR_004944) Copy
http://glioblastoma.alleninstitute.org/
Platform for exploring the anatomic and genetic basis of glioblastoma at the cellular and molecular levels that includes two interactive databases linked together by de-identified tumor specimen numbers to facilitate comparisons across data modalities: * The open public image database, here, providing in situ hybridization data mapping gene expression across the anatomic structures inherent in glioblastoma, as well as associated histological data suitable for neuropathological examination * A companion database (Ivy GAP Clinical and Genomic Database) offering detailed clinical, genomic, and expression array data sets that are designed to elucidate the pathways involved in glioblastoma development and progression. This database requires registration for access. The hope is that researchers all over the world will mine these data and identify trends, correlations, and interesting leads for further studies with significant translational and clinical outcomes. The Ivy Glioblastoma Atlas Project is a collaborative partnership between the Ben and Catherine Ivy Foundation, the Allen Institute for Brain Science and the Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment.
Proper citation: Ivy Glioblastoma Atlas Project (RRID:SCR_005044) Copy
http://bejerano.stanford.edu/prism/public/html/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRISM (Stanford database) (RRID:SCR_005375) Copy
Tool for identification and analysis of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. It may identify the unmethylated and methylated regions for a single sample, the conserved and differential methylation regions with different methylation patterns for paired or multiple samples. It includes four main modules as follows: # Normalization of the sequencing reads of cytosines following guanines; # Identification of the unmethylated (methylated) regions using hotspot extension algorithm; # Identification of conservatively and differentially methylated regionsby combining the combinatorial algorithm for determination of potentially functional regions with the algorithm of analysis of variance (ANOVA) for assess the statistical significance of differentially methylated regions; # Extraction of sequence features and visualization of these potentially functional regions.
Proper citation: CpG MPs (RRID:SCR_005441) Copy
http://www.garban.org/garban/home.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool
Proper citation: GARBAN (RRID:SCR_005778) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.