Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 16 showing 301 ~ 320 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

http://www.nibb.ac.jp/brish/indexE.html

Database of detailed protocols for single and double in situ hybridization (ISH) method, probes used by Yamamori lab and others useful for studies of brain, and many photos of mammalian (mostly mouse and monkey) brains stained with various gene probes. Also includes a brain atlas of gene expression. Currently, the atlas comprises a series of un-annotated images showing the localization of a particular probe or molecule, e.g., AChE.

Proper citation: BraInSitu: A homepage for molecular neuroanatomy (RRID:SCR_008081) Copy   


http://sig.biostr.washington.edu/projects/brain/

The UW Integrated Brain Project is one project within the national Human Brain Project, a national multi-agency effort to develop informatics tools for managing the exploding amount of information that is accumulating about the human brain. The objective of the UW Integrated Brain Project effort is to organize and integrate distributed functional information about the brain around the structural information framework that is the long term goal of our work. This application therefore extends the utility of the Digital Anatomist Project by using it to organize non-structural information. The initial driving neuroscience problem that is being addressed is the management, visualization and analysis of cortical language mapping data. In recent years, advances in imaging technology such as PET and functional MRI have allowed researchers to observe areas of the cortex that are activated when the subject performs language tasks. These advances have greatly accelerated the amount of data available about human language, but have also emphasized the need to organize and integrate the sometimes contradictory sources of data, in order to develop theories about language organization. The hypothesis is that neuroanatomy is the common substrate on which the diverse kinds of data can be integrated. A result of the work done by this project is a set of software tools for generating a 3-D reconstruction of the patient''s own brain from MRI, for mapping functional data to this reconstruction, for normalizing individual anatomy by warping to a canonical brain atlas and by annotating data with terms from an anatomy ontology, for managing individual lab data in local laboratory information systems, for integrating and querying data across separate data management systems, and for visualizing the integrated results. Sponsors: This Human Brain Project research is funded jointly by the National Institute on Deafness and Other Communication Disorders, the National Institute of Mental Health, and the National Institute on Aging.

Proper citation: University of Washington Integrated Brain Project (RRID:SCR_008075) Copy   


http://mmil.ucsd.edu/

An interdisciplinary group of scientists and clinicians who study the human brain using a variety of imaging, recording, and computational techniques. Their primary goal is to bridge non-invasive imaging technologies to the underlying neurophysiology of brain neuronal circuits for a better understanding of healthy human brain function, and mechanisms of disruption of this function in diseases such as Alzheimer's, epilepsy and stroke. The other goal of the MMIL is to develop and apply advanced imaging techniques to understanding the human brain and its disorders. In order to ground these methodological developments in their underlying neurobiology, invasive studies in humans and animals involving optical and micro physiological measures are also performed. These methodologies are applied to understanding normal function in sleep, memory and language, development and aging, and diseases such as dementia, epilepsy and autism.

Proper citation: Multimodal Imaging Laboratory (RRID:SCR_008071) Copy   


  • RRID:SCR_007973

    This resource has 100+ mentions.

http://enhancer.lbl.gov/

Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.

Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy   


  • RRID:SCR_008020

    This resource has 10+ mentions.

http://www.buzsakilab.com/

Lab interested in understanding how neuronal circuitries of the brain support its cognitive capacities. Its goal is to provide rational, mechanistic explanations of cognitive functions at a descriptive level. In the lab''s view, the most promising area of cognitive faculties for scientific inquiry is memory, since it is a well-circumscribed term, can be studied in animals and substantial knowledge has accumulated on the molecular mechanisms of synaptic plasticity. Available software: * NeuroScope: NeuroScope can display local field potentials (EEG), neuronal spikes, behavioral events, as well as the position of the animal in the environment. It also features limited editing capabilities. * Klusters: Klusters is a powerful and easy-to-use cluster cutting application designed to help neurophysiologists sort action potentials from multiple neurons on groups of electrodes (e.g., tetrodes or multisite silicon probes). * KlustaKwik: KlustaKwik is a program for automatic cluster analysis, specifically designed to run fast on large data sets. * MATLAB m-files: A selection of MATLAB files developed in the lab., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Buzsaki Lab (RRID:SCR_008020) Copy   


http://www.cmbn.no/ottersen/

A laboratory that investigates the molecular mechanisms involved in the development of acute and chronic neurodegenerative disease, with a focus on the role of glutamate excitotoxicity. It aims at unraveling the molecular basis for cell death and edema development in stroke, and explores the pathophysiology of Alzheimer's disease and temporal lobe epilepsy. The main objective of the LMN is to advance understanding of the role of glutamate, as a transmitter substance in the normal brain and as a mediator of excitotoxicity in pathological conditions such as stroke. To this end the LMN employs several vital and nonvital imaging techniques. Model systems includes organotypic slice cultures and transgenic animals. An important focus of the LMN is to explore the role of DNA damage and repair in the pathogenesis of neurodegenerative disease. LMN is also engaged in research on molecular mechanism underlying brain edema, epilepsy, and Alzheimer's disease.

Proper citation: Laboratory of Molecular Neuroscience, University of Oslo (RRID:SCR_008097) Copy   


  • RRID:SCR_008264

    This resource has 500+ mentions.

http://www.cabiatl.com/mricro/

MRIcro allows Windows and Linux computers view medical images. It is a standalone program, but includes tools to complement SPM (software that allows neuroimagers to analyze MRI, fMRI and PET images). MRIcro allows efficient viewing and exporting of brain images. In addition, it allows neuropsychologists to identify regions of interest (ROIs, e.g. lesions). MRIcro can create Analyze format headers for exporting brain images to other platforms. Some features of MRIcro are: - Converts medical images to SPM friendly Analyze format. - View Analyze format images (big or little endian). - Create Analyze format headers (big or little endian). - Create 3D regions of interest (with computed volume & intensity). - Overlap multiple regions of interest. - Rotate images to match SPM template images. - Export images to BMP, JPEG, PNG or TIF format. - Yoked images: linked viewing of multiple images (e.g. view same coordinates of PET and MRI scans). Users familiar with other Windows programs will find that this software is fairly straightforward to use. Resting the mouse cursor over a button will cause a text hint to appear over the button. However, a tutorial with a step by step guide of how to use MRIcro with SPM is available.

Proper citation: MRIcro Software (RRID:SCR_008264) Copy   


http://diademchallenge.org/data_sets.html

A software development competition, the DIADEM Challenge,to benefit the scientific community by encouraging the development of better software for automating three-dimensional reconstructions of neuronal arbors. The intent of the Sponsors is to ensure that the best software submitted for the competition is made available to the scientific community within a reasonable time and on reasonable terms. No purchase is necessary to enter or win. The competition will have two rounds. As of April 10, 2009, individuals and teams may register to participate in the competition and may download sets of image stacks (Data Sets) of non-human animal brains along with three-dimensional reconstructions for some of these Data Sets for training purposes. Submissions of software, including executable programs, supporting documentation, and reconstruction files for the Data Sets, must be uploaded to the competition website no later than April 9, 2010. In order to be eligible to win the competition, the individuals and at least one member of any teams whose submissions are selected for the Final Round (Finalists) must participate in the Final Round and scientific conference. Personal participation in the Final Round and scientific conference is important for two main reasons: first, because the Finalists software will be tested at the Final Round against additional Data Sets so that the judges can select a winner or winners, and second, because the larger scientific conference, of which the Final Round will be a part, is intended to foster extensive scientific interaction among neuroscientists and computational scientists, including plenary and poster sessions to discuss challenges, solutions, and future directions. There are 5 datasets, all of which have to be reconstructed for the qualifier phase. Once you have registered your group, dataset download information will be sent to you via E-mail. The 5 datasets are: - Cerebellar Climbing Fibers - Hippocampal CA3 Interneuron - Neocortical Layer 6 Axons - Neuromuscular Projection Fibers - Olfactory Projection Fibers Sponsors: The sponsors of this competition are: Allen Institute for Brain Science, Seattle, Washington; Howard Hughes Medical Institute (HHMI), Chevy Chase, Maryland; and Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.

Proper citation: DIADEM Challenge: DIgital reconstruction of Axonal and DEndritic Morphology (DIADEM) Software Development Competition (RRID:SCR_008262) Copy   


  • RRID:SCR_017399

    This resource has 1+ mentions.

https://www.ibis-network.org/index.html

Research study of brain development in infants and children with autism. Consortium of researchers across North America that work together to discover early changes in brain development of young children with autism. Participants will travel to their closest study location to receive developmental and behavioral assessments, MRI scan of the brain. Participants will be reimbursed for travel and related expenses. Families of children at high risk for developing symptoms of autism will receive assistance with referrals for local services. check if data repository is in the papers

Proper citation: IBIS Network (RRID:SCR_017399) Copy   


  • RRID:SCR_017272

    This resource has 10+ mentions.

http://www.brainimagelibrary.org

Repository for confocal microscopy brain imaging data. Data archives that have been established by BRAIN Initiative Data Sharing. National public resource enabling researchers to deposit, analyze, mine, share and interact with large brain image datasets. Operated as partnership between Biomedical Applications Group at Pittsburgh Supercomputing Center, Center for Biological Imaging at University of Pittsburgh and Molecular Biosensor and Imaging Center at Carnegie Mellon University. Provides persistent centralized repository for brain microscopy data.

Proper citation: Brain Image Library (RRID:SCR_017272) Copy   


  • RRID:SCR_017612

    This resource has 1+ mentions.

https://kg.ebrains.eu/

Metadata management system built for EBRAINS. Multi modal metadata store which brings together information from different areas of Human Brain Project as well as from external partners. Graph database tracks linkage between experimental data and neuroscientific data science supporting more extensive data reuse and complex computational research.Supports rich terminologies, ontologies and controlled vocabularies. Built by design to support iterative elaborations of common standards and supports these by probabilistic suggestion and review systems.

Proper citation: EBRAINS Knowledge Graph (RRID:SCR_017612) Copy   


  • RRID:SCR_018164

    This resource has 10+ mentions.

https://nemoanalytics.org/

Portal enabling web based visualization and analysis of multi omic data describing cell types in developing and adult brain, powered by gEAR and EpiViz. Release 1 on April 2019 includes single cell and bulk tissue RNAseq, ATACseq, and ChIPseq from fetal human prefrontal cortex, as well as from stem cell models of neural induction. Portal will expand to include multiple regions of developing and adult brain and additional analytical tools.

Proper citation: NeMO Analytics (RRID:SCR_018164) Copy   


http://www.neuro.uni-jena.de/cat/

Software toolbox as extension to SPM12 to provide computational anatomy. This covers diverse morphometric methods such as voxel based morphometry, surface based morphometry, deformation based morphometry, and region or label based morphometry.

Proper citation: Computational Anatomy Toolbox for SPM (RRID:SCR_019184) Copy   


http://knightadrc.wustl.edu/

The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) supports researchers and our surrounding community in their pursuit of answers that will lead to improved diagnosis and care for persons with Alzheimer disease (AD). The Center is committed to the long-term goal of finding a way to effectively treat and prevent AD. The Knight ADRC facilitates advanced research on the clinical, genetic, neuropathological, neuroanatomical, biomedical, psychosocial, and neuropsychological aspects of Alzheimer disease, as well as other related brain disorders.

Proper citation: Washington University School of Medicine Knight Alzheimers Disease Research Center (RRID:SCR_000210) Copy   


https://resource.loni.usc.edu/resources/atlases/

Probabilistic reference system for human brain, including tools to establish this reference system for structural and functional anatomy on both macroscopic (in vivo) and microscopic (post mortem) levels. Project has expanded neuroinformatics tools for data sharing and created Conforming Site System that allows laboratories worldwide to contribute data to evolving atlas. Through implementation of ICBM data sharing policy space, they are fostering data exchange while still providing for scientific credit assignment and subject confidentiality.ICBM atlas collection consists of ICBM Template, tool developed to provide reference that includes both set of coordinates and associated anatomical labels; the ICBM 452 T1 atlas, average of T1-weighted MRIs of normal young adult brains, ICBM probabilistic atlases, and Cytoarchitectonic Atlas. ICBM Subject Database is web-based database infrastructure that simplifies image dataset collection, organization and dissemination. Authorized users may view representations of data and form collections of datasets that can be downloaded or fed directly into Pipeline environment for distributed processing and analysis.

Proper citation: International Consortium for Brain Mapping (RRID:SCR_000445) Copy   


  • RRID:SCR_000448

    This resource has 100+ mentions.

http://www.talairach.org/

Software automated coordinate based system to retrieve brain labels from the 1988 Talairach Atlas. Talairach Daemon database contains anatomical names for brain areas using x-y-z coordinates defined by the 1988 Talairach Atlas.

Proper citation: Talairach Daemon (RRID:SCR_000448) Copy   


  • RRID:SCR_005530

http://brainethics.org/

There are a lot of fine blogs out there covering the avalance of current neuroscience research. With this blog Thomas Rams��y & Martin Skov want to highlight the many consequences of this growing understanding of the human brain. We are especially interested in two types of consequences: Tinkering with the brain and What is it like to be a human being? * Tinkering with the brain: First and foremost, with an understanding of how the brain works comes the possibility of tinkering with it. We already use billions of dollars every year on psychopharmocologia trying to treat depression, schizophrenia, obsessive-compulsive disorder and other mental diseases. But should we also use our knowledge of the brain to treat undesirable mental traits such as pedophilia or sociopathy? And what about enhancing normal brains? Clearly, evolution hasn''t endowed us with the most efficient brain imaginable. Shouldn''t we do something about its many shortcomings? * What is it like to be a human being?: Secondly, our view of human behavior is sure to change with our improved understanding of the human brain. Our knowledge of core human faculties such as language, social reasoning, aesthetics, and economics is already being challenged by modern neuroscience, yielding multiple hard questions. Do we have a free will? Is the mind innate or plastic? If people are not responsible for their actions (since all actions are caused by blind molecular processes) does our legal system still make sense? In short, will modern neuroscience come to completely redefine human nature? We try to discuss contemporary research literature, not just news reports. Although we will occasionally also target popular science reports, since we believe they play an important role in dissemining lessons from the lab. And in the future we plan to also post interviews with interesting researchers, as well as link to our own publications in journals and books. Additionally, the latest and most important books in the multidisciplinary field of neuroscience, cognition, psychology, ethics and economics are presented.

Proper citation: BrainEthics (RRID:SCR_005530) Copy   


http://hnrc.hivresearch.ucsd.edu/

The mission of the HIV Neurobehavioral Research Center (HNRC) is to increase our understanding of how HIV and other diseases affect the human nervous system. The HNRC conducts local, national, and international research devoted to advancing our knowledge of the prevention, diagnosis and treatment of HIV-related diseases as they affect the brain and nervous system, and result in impairment of everyday functioning. Research areas of the Center include: - The incidence, prevalence, and features of neurocognitive impairment caused by HIV - The attributes of the virus, host, and host-virus interactions that determine the presentation of HIV-associated neurocognitive disorders - Possible molecular and cellular mechanisms of nervous system impairment, including the mechanisms by which host-virus factors generate neural injury and neurobehavioral disorders - The cerebrospinal fluid (CSF) as a window on CNS events * The role of co-pathogens and comorbidities in neuroAIDS (e.g., hepatitis C infection, methamphetamine abuse) - Real life implications of neurocognitive impairment in terms of work, daily life, and survival - The effects of HIV disease and neurocognitive impairment on family and social adaptation - NeuroAIDS in resource limited settings - Treatments for neurocognitive impairment and behavioral interventions HNRC also has a Developmental Grants Program (DGP), the primary goal of which is the initiation of innovative studies by junior faculty and trainees at UCSD or affiliated institutions with the following objectives: 1. Recruitment to neuroAIDS research of new investigators or established investigators without prior experience in the field; 2. Generation and pilot testing of new research initiatives; 3. Fostering collaboration among investigators from throughout Southern California. The program provides to qualified investigators and trainees any appropriate combination of the following forms of support: 1. Small, 1-2 year grants to support pilot studies; 2. Access to HNRC core resources such as data, specimens, participants, equipment, administrative support, or expert consultation and technical assistance. Lastly, The the NHRC Mentored Investigator Program recruits, supports, and follows the progress of graduate students, postdoctoral (Ph.D. or M.D.) fellows, and junior faculty in disciplines relevant to HNRC research. The HNRC is committed to tailoring our training opportunities to the backgrounds and interests of candidates from a variety of disciplines who join us with various levels of training and experience in research. We have and will continue to provide training and mentoring of medical students, doctoral students in clinical psychology, and postdoctoral fellows in Medicine, Psychiatry, Neurology, and Psychology. Sponsors: The Center is supported by public funding from the National Institutes of Health, the State of California, and other sources.

Proper citation: HIV Neurobehavioral Research Center (RRID:SCR_005370) Copy   


  • RRID:SCR_005402

    This resource has 10+ mentions.

http://neurolex.org/wiki/Main_Page

A freely editable semantic wiki for community-based curation of the terms used in Neuroscience. Entries are curated and eventually incorporated into the formal NIFSTD ontology. NeuroLex also includes a Resource branch for community members to freely add neuroscience relevant resources that do not become part of NIFSTD ontology but rather make up the NIF Registry. As part of the NIF, we provide a simple search interface to many different sources of neuroscience information and data. To make this search more effective, we are constructing ontologies to help organize neuroscience concepts into category hierarchies, e.g., neuron is a cell. These categories provide the means to perform more effective searches and also to organize and understand the information that is returned. But an important adjunct to this activity is to clearly define all of the terms that we use to describe our data, e.g., anatomical terms, techniques, organism names. Because wikis provide an easy interface for communities to contribute their knowledge, we started the NeuroLex.

Proper citation: NeuroLex (RRID:SCR_005402) Copy   


http://fcon_1000.projects.nitrc.org/

Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.

Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X