Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 16 showing 301 ~ 320 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection

http://gst.ornl.gov/

We are the Computational Biology and Bioinformatics Group of the Biosciences Division of Oak Ridge National Laboratory. We conduct genetics research and system development in genomic sequencing, computational genome analysis, and computational protein structure analysis. We provide bioinformatics and analytic services and resources to collaborators, predict prospective gene and protein models for analysis, provide user services for the general community, including computer-annotated genomes in Genome Channel. Our collaborators include the Joint Genome Institute, ORNL''s Computer Science and Mathematics Division, the Tennessee Mouse Genome Consortium, the Joint Institute for Biological Sciences, and ORNL''s Genome Science and Technology Graduate Program.

Proper citation: Computational Biology at ORNL (RRID:SCR_005710) Copy   


  • RRID:SCR_005790

    This resource has 1+ mentions.

http://www.compbio.dundee.ac.uk/gotcha/gotcha.php

GOtcha provides a prediction of a set of GO terms that can be associated with a given query sequence. Each term is scored independently and the scores calibrated against reference searches to give an accurate percentage likelihood of correctness. These results can be displayed graphically. Why is GOtcha different to what is already out there and why should you be using it? * GOtcha uses a method where it combines information from many search hits, up to and including E-values that are normally discarded. This gives much better sensitivity than other methods. * GOtcha provides a score for each individual term, not just the leaf term or branch. This allows the discrimination between confident assignments that one would find at a more general level and the more specific terms that one would have lower confidence in. * The scores GOtcha provides are calibrated to give a real estimate of correctness. This is expressed as a percentage, giving a result that non-experts are comfortable in interpreting. * GOtcha provides graphical output that gives an overview of the confidence in, or potential alternatives for, particular GO term assignments. The tool is currently web-based; contact David Martin for details of the standalone version. Platform: Online tool

Proper citation: GOtcha (RRID:SCR_005790) Copy   


  • RRID:SCR_006077

    This resource has 50+ mentions.

http://yh.genomics.org.cn

This database presents the entire DNA sequence of the first diploid genome sequence of a Han Chinese, a representative of Asian population. The genome, named as YH, represents the start of YanHuang Project, which aims to sequence 100 Chinese individuals in 3 years. It was assembled based on 3.3 billion reads (117.7Gbp raw data) generated by Illumina Genome Analyzer. In total of 102.9Gbp nucleotides were mapped onto the NCBI human reference genome (Build 36) by self-developed software SOAP (Short Oligonucleotide Alignment Program), and 3.07 million SNPs were identified. The personal genome data is illustrated in a MapView, which is powered by GBrowse. A new module was developed to browse large-scale short reads alignment. This module enabled users track detailed divergences between consensus and sequencing reads. In total of 53,643 HGMD recorders were used to screen YH SNPs to retrieve phenotype related information, to superficially explain the donor's genome. Blast service to align query sequences against YH genome consensus was also provided.

Proper citation: YanHuang Project (RRID:SCR_006077) Copy   


http://ygac.med.yale.edu

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. TRIPLES provides full public access to the data and reagents generated from ongoing functional analysis of the yeast genome. Using a novel transposon-tagging approach, we have analyzed disruption phenotypes, gene expression, and protein localization on a genome-wide scale in Saccharomyces. The data generated from this study may be accessed through our database, TRIPLES ; additionally, all reagents generated in this study are freely available from on-line order forms (linked to TRIPLES as well). multipurpose, mini-transposon, mutant alleles, phenotypes, protein localization, gene expression, Saccharomyces cerevisiae, Web-accessible database, transposon-mutagenized yeast strains, downloaded, tab-delimited, text file, protein localization data, fluorescent micrographs, staining patterns, indirect immunofluorescence analysis of indicated epitope-tagged proteins, subcellular localization of the yeast proteome, visual library, Nucleic Acid Sequence Data Library (GenBank), clone report, graphic map, transposon insertions (represented as flags)

Proper citation: TRIPLES- a database of TRansposon-Insertion Phenotypes Localization and Expression in Saccharomyces (RRID:SCR_005714) Copy   


  • RRID:SCR_006048

    This resource has 1+ mentions.

http://igdb.nsclc.ibms.sinica.edu.tw/

IGDB.NSCLC database is aiming to facilitate and prioritize identified lung cancer genes and microRNAs for pathological and mechanistic studies of lung tumorigenesis and for developing new strategies for clinical interventions. We integrated and curated various lung cancer genomic datasets to present # lung cancer genes with somatic mutations, experimental supports and statistic significance in association with clinicopathological features; # genomic alterations with copy number alterations (CNA) detected by high density SNP arrays, gain or loss regions detected by arrayed comparative genome hybridization (aCGH), and loss of heterozygosity (LOH) detected by microsatellite markers; # aberrant expression of genes and microRNAs detected by various microarrays. IGDB.NSCLC database provides user friendly interfaces and searching functions to display multiple layers of evidence for detecting lung cancer target genes and microRNAs, especially emphasizing on concordant alterations: # genes with altered expression located in the CNA regions; # microRNAs with altered expression located in the CNA regions; # somatic mutation genes located in the CNA regions; and # genes associated with clinicopathological features located in the CNA regions. These concordant altered genes and miRNAs should be prioritized for further basic and clinical studies.

Proper citation: IGDB.NSCLC (RRID:SCR_006048) Copy   


  • RRID:SCR_006345

    This resource has 10+ mentions.

http://humanmetabolism.org/

A comprehensive biochemical knowledge-base on human metabolism, this community-driven, consensus metabolic reconstruction integrates metabolic information from five different resources: * Recon 1, a global human metabolic reconstruction (Duarte et al, PNAS, 104(6), 1777-1782, 2007) * EHMN, Edinburgh Human Metabolic Network (Hao et al., BMC Bioinformatics 11, 393, 2010) * HepatoNet1, a liver metabolic reconstruction (Gille et al., Molecular Systems Biology 6, 411, 2010), * Ac/FAO module, an acylcarnitine/fatty acid oxidation module (Sahoo et al., Molecular bioSystems 8, 2545-2558, 2012), * a human small intestinal enterocytes reconstruction (Sahoo and Thiele, submitted). Additionally, more than 370 transport and exchange reactions were added, based on a literature review. Recon 2 is fully semantically annotated (Le Nov��re, N. et al. Nat Biotechnol 23, 1509-1515, 2005) with references to persistent and publicly available chemical and gene databases, unambiguously identifying its components and increasing its applicability for third-party users. Here you can explore the content of the reconstruction by searching/browsing metabolites and reactions. Recon 2 predictive model is available in the Systems Biology Markup Language format.

Proper citation: Recon x (RRID:SCR_006345) Copy   


http://www.informatics.jax.org

International database for laboratory mouse. Data offered by The Jackson Laboratory includes information on integrated genetic, genomic, and biological data. MGI creates and maintains integrated representation of mouse genetic, genomic, expression, and phenotype data and develops reference data set and consensus data views, synthesizes comparative genomic data between mouse and other mammals, maintains set of links and collaborations with other bioinformatics resources, develops and supports analysis and data submission tools, and provides technical support for database users. Projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, and MouseCyc Project at MGI.

Proper citation: Mouse Genome Informatics (MGI) (RRID:SCR_006460) Copy   


  • RRID:SCR_006125

    This resource has 50+ mentions.

http://www.snpedia.com/index.php/SNPedia

Wiki investigating human genetics including information about the effects of variations in DNA, citing peer-reviewed scientific publications. It is used by Promethease to analyze and help explain your DNA. It is based on a wiki model in order to foster communication about genetic variation and to allow interested community members to help it evolve to become ever more relevant. As the cost of genotyping (and especially of fully determining your own genomic sequence) continues to drop, we''''ll all want to know more - a lot more - about the meaning of these DNA variations and SNPedia will be here to help. SNPedia has been launched to help realize the potential of the Human Genome Project to connect to our daily lives and well-being. For more information see the Wikipedia page, http://en.wikipedia.org/wiki/SNPedia * Download URL: http://www.SNPedia.com/index.php/Bulk * Web Service URL: http://bots.SNPedia.com/api.php

Proper citation: SNPedia (RRID:SCR_006125) Copy   


  • RRID:SCR_006112

    This resource has 1+ mentions.

http://proportal.mit.edu/

ProPortal is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization--from the genome to the ecosystem--embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light-dark cycle reveals the choreography of gene expression in cells in a ''natural'' state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.

Proper citation: ProPortal (RRID:SCR_006112) Copy   


  • RRID:SCR_006427

    This resource has 1+ mentions.

http://research.nhgri.nih.gov/CGD/

Manually curated database of all conditions with known genetic causes, focusing on medically significant genetic data with available interventions. Includes gene symbol, conditions, allelic conditions, inheritance, age in which interventions are indicated, clinical categorization, and general description of interventions/rationale. Contents are intended to describe types of interventions that might be considered. Includes only single gene alterations and does not include genetic associations or susceptibility factors related to more complex diseases.

Proper citation: Clinical Genomic Database (RRID:SCR_006427) Copy   


  • RRID:SCR_006151

    This resource has 10000+ mentions.

https://www.ncbi.nlm.nih.gov/geo/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on January 19, 2022.

Proper citation: NCBI Epigenomics (RRID:SCR_006151) Copy   


http://ccr.coriell.org/Sections/Collections/HuREF/?SsId=78

The Human Reference Genetic Material Repository makes available DNA from a single individual, J. Craig Venter, whose genome has been sequenced and assembled. The DNA samples are prepared from a lymphoblastoid cell line established at Coriell Cell Repositories from a sample of peripheral blood. The DNA samples are available in 50 microgram aliquots. The lymphoblastoid cell line is not available for distribution. The human DNA sample provided is that of J. Craig Venter whose DNA from white blood cells and sperm was sequenced using Sanger chemistry (ABI Capillary Electrophoresis Platforms 3700 and 3730xl), assembled using the Celera Assembler and was published in PLoS Biology . J. Craig Venter, born on 14 October 1946, is a Caucasian male of self-reported European-American ancestry. The data available on this sample, whose genome assembly is referred to as HuRef, includes: * Whole Genome Shotgun Sequencing data * Sequence trace set deposited by JCVI in the NCBI trace archive * Human Genome Browser displaying sequence assembly, DNA variants and gene annotations Additional data sets from this study include: * Full set of Sanger reads used for genome assembly * SNP and insertion/deletion variant on the human genome sequence coordinates (NCBI version 36) * Affymetrix 500K GeneChip data * Illumina HumanHap650Y Genotyping BeadChip data Given the amount of data publicly available the genomic content of this sample, HuRef will be useful as a reference for many genetic studies.

Proper citation: Human Reference Genetic Material Repository (RRID:SCR_004693) Copy   


  • RRID:SCR_007054

    This resource has 1+ mentions.

http://zgc.nci.nih.gov/

Part of zebrafish genome project. ZGC project to produce cDNA libraries, clones and sequences to provide complete set of full-length (open reading frame) sequences and cDNA clones of expressed genes for zebrafish. All ZGC sequences are deposited in GenBank and clones can be purchased from distributors of IMAGE consortium. With conclusion of ZGC project in September 2008, GenBank records of ZGC sequences will be frozen, without further updates. Since definition of what constitutes full-length coding region for some of genes and transcripts for which we have ZGC clones will likely change in future, users planning to order ZGC clones will need to monitor for these changes. Users can make use of genome browsers and gene-specific databases, such as UCSC Genome browser, NCBI's Map Viewer, and Entrez Gene, to view relevant regions of genome (browsers) or gene-related information (Entrez Gene).

Proper citation: Zebrafish Gene Collection (RRID:SCR_007054) Copy   


  • RRID:SCR_006161

    This resource has 10+ mentions.

http://www.sanger.ac.uk/Projects/D_rerio/zmp/

Create knockout alleles in protein coding genes in the zebrafish genome, using a combination of whole exome enrichment and Illumina next generation sequencing, with the aim to cover them all. Each allele created is analyzed for morphological differences and published on the ZMP site. Transcript counting is performed on alleles with a morphological phenotype. Alleles generated are archived and can be requested from this site through the Zebrafish International Resource Center (ZIRC). You may register to receive updates on genes of interest, or browse a complete list, or search by Ensembl ID, gene name or human and mouse orthologue.

Proper citation: ZMP (RRID:SCR_006161) Copy   


http://www.mousephenotype.org/

Center that produces knockout mice and carries out high-throughput phenotyping of each line in order to determine function of every gene in mouse genome. These mice will be preserved in repositories and made available to scientific community representing valuable resource for basic scientific research as well as generating new models for human diseases.

Proper citation: International Mouse Phenotyping Consortium (IMPC) (RRID:SCR_006158) Copy   


  • RRID:SCR_000354

    This resource has 10+ mentions.

http://www.clcbio.com/products/clc-main-workbench/

A suite of software for DNA, RNA and protein sequence data analysis. The software allows for the analysis and visualization of Sanger sequencing data as well as gene expression analysis, molecular cloning, primer design, phylogenetic analyses, and sequence data management.

Proper citation: CLC Main Workbench (RRID:SCR_000354) Copy   


  • RRID:SCR_008244

    This resource has 10+ mentions.

http://mrna.otago.ac.nz/

Database that provides access to mRNA sequences and associated regulatory elements that were processed from Genbank. These mRNA sequences include complete genomes, which are divided into 5-prime UTRs, 3-prime UTRs, initiation sequences, termination regions and full CDS sequences. This data can be searched for a range of properties including specific mRNA sequences, mRNA motifs, codon usage, RSCU values, information content, etc.

Proper citation: Transterm (RRID:SCR_008244) Copy   


  • RRID:SCR_008232

    This resource has 1+ mentions.

http://www.primervfx.com/#welcome

PrimerParadise is an online PCR primer database for genomics studies. The database contains predesigned PCR primers for amplification of exons, genes and SNPs of almost all sequenced genomes. Primers can be used for genome-wide projects (resequencing, mutation analysis, SNP detection etc). The primers for eukaryotic genomes have been tested with e-PCR to make sure that no alternative products will be generated. Also, all eukaryotic primers have been filtered to exclude primers that bind excessively throughout the genome. Genes are amplified as amplicons. Amplicons are defined as only one genes exons containing maximaly 3000 bp long dna segments. If gene is longer than 3000 bp then it is split into the segments at length 3000 bp. So for example gene at length 5000 bp is split into two segment and for both segments there were designed a separate primerpair. If genes exons length is over 3000 bp then it is split into amplicons as well. Every SNP has one primerpair. In addition of considering repetitive sequences and mono-dinucleotide repeats, we avoid designing primers to genome regions which contain other SNPs. -There are two ways to search for primers: you can use features IDs ( for SNP primers Reference ID, for gene/exon primers different IDs (Ensembl gene IDs, HUGO IDs for human genes, LocusLink IDs, RefSeq IDs, MIM IDs, NCBI gene names, SWISSPROT IDs for bacterial genes, VEGA gene IDs for human and mouse, Sanger S.pombe systematic gene names and common gene names, S.cerevisiae GeneBanks Locus, AccNo, GI IDs and common gene names) -you can use genome regions (chromosome coordinates, chromosome bands if exists) -Currently we provide 3 primers collections: proPCR for prokaryotic organisms genes primers -euPCR for eukaryotic organisms genes/exons primers -snpPCR for eukaryotic organisms SNP primers Sponsors: PrimerStudio is funded by the University of Tartu.

Proper citation: PrimerStudio (RRID:SCR_008232) Copy   


  • RRID:SCR_008147

    This resource has 1+ mentions.

http://www.thearkdb.org/arkdb/

This website contains the mapping sequence of poultry. The ArkDB database system aims to provide a comprehensive public repository for genome mapping data from farmed and other animal species. In doing so, it aims to provide a route in to genomic and other sequence from the initial viewpoint of linkage mapping, RH mapping, physical mapping or - possibly more importantly - QTL mapping data. It's supported, in part, by the USDA-CSREES National Animal Genome Research Program in order to serve the poultry genome mapping community. This system represents a complete rewrite of the original version with the code migrated to java and the underlying database targeted at postgres (although any standards-compliant database engine should suffice). The initial release records details of maps and the markers that they contain. There are alternative entry points that target either a chromosome or a specific mapping analysis as the starting point. Limited relationships between markers are recorded and displayed. As with the previous version, all maps are drawn using data extracted from the database on the fly.

Proper citation: ChickBase (RRID:SCR_008147) Copy   


  • RRID:SCR_008140

    This resource has 1+ mentions.

http://microbialgenomics.energy.gov/index.shtml

Through its Microbial Genome Program (MGP) and its Genomics:GTL (GTL) program, DOEs Office of Biological and Environmental Research (BER) has sequenced more than 485 microbial genomes and 30 microbial communities having specialized biological capabilities. Identifying these genes will help investigators discern how gene activities in whole living systems are orchestrated to solve myriad life challenges. The MGP was begun in 1994 as a spinoff from the Human Genome Program. The goal of the program was to sequence the genomes of a number of nonpathogenic microbes that would be useful in solving DOE''s mission challenges in environmental-waste cleanup, energy production, carbon cycling, and biotechnology. Past projects include microbial genome program, microbial cell project, and the Laboratory Science Program at the DOE Joint Genome Institute. The two ongoing projects are Genomics: GTL program and Community Sequencing Program at the DOE Joint Genome Institute. Sponsors: Site sponsored by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Microbial Genomics Program (RRID:SCR_008140) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X