Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 15 showing 281 ~ 300 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection

http://www.plexdb.org/index.php

PLEXdb (Plant Expression Database) is a unified gene expression resource for plants and plant pathogens. PLEXdb is a genotype to phenotype, hypothesis building information warehouse, leveraging highly parallel expression data with seamless portals to related genetic, physical, and pathway data. The integrated tools of PLEXdb allow investigators to use commonalities in plant biology for a comparative approach to functional genomics through use of large-scale expression profiling data sets.

Proper citation: PLEXdb - Plant Expression Database (RRID:SCR_006963) Copy   


  • RRID:SCR_012884

http://www.roslin.ed.ac.uk/alan-archibald/porcine-genome-sequencing-project/

Map of identifyied genes controlling traits of economic and welfare significance in the pig. The project objectives were to produce a genetic map with markers spaced at approximately 20 centiMorgan intervals over at least 90% of the pig genome; to produce a physical map with at least one distal and one proximal landmark locus mapped on each porcine chromosome arm and also genetically mapped; to develop a flow karyotype for the pig based on FACS sorted chromosomes; to develop PCR based techniques to enable rapid genotyping for polymorphic markers; to evaluate synteny conservation between pigs, man, mice and cattle; to develop and evaluate the statistical techniques required to analyze data from QTL mapping experiments and to plan and initiate the mapping of QTLs in the pig; to map loci affecting traits of economic and biological significance in the pig; and to develop the molecular tools to allow the future identification and cloning of mapped loci. Animal breeders currently assume that economically important traits such as growth, carcass composition and reproductive performance are controlled by an infinite number of genes each of infinitessimal effect. Although this model is known to be unrealistic, it has successfully underpinned the genetic improvement of livestock, including pigs, over recent decades. A map of the pig genome would allow the development of more realistic models of the genetic control of economic traits and the ultimately the identification of the major trait genes. This would allow the development of more efficient marker assisted selection which may be of particular value for traits such as disease resistance and meat quality.

Proper citation: Pig Genome Mapping (RRID:SCR_012884) Copy   


http://www.aniseed.cnrs.fr/

Database of ascidian embryonic development at the level of the genome (cis-regulatory sequences, gene expression, protein annotation), of the cell (morphology, fate, induction, lineage) or of the whole embryo (anatomy, morphogenesis). Currently, four organism models are described in Aniseed: Ciona intestinalis, Ciona savignyi, Halocynthia roretzi and Phallusia mammillata.
This version supports four sets of Ciona intestinalis transcript models: JGI v1.0, KyotoGrail 2005, KH and ENSEMBL, all functionally annotated, and grouped into Aniseedv3.0 gene models. Users can explore their expression profiles during normal or manipulated development, access validated cis-regulatory regions, get the molecular tools used to assay gene function, or all articles related to the function, or regulation of a given gene. Known transcriptional regulators and targets are listed for each gene, as are the gene regulatory networks acting in individual anatomical territories.
ANISEED is a community tool, and the direct involvement of external contributors is important to optimize the quality of the submitted data. Virtual embryo: The 3D Virtual embryo is available to download in the download section of the website.

Proper citation: Ascidian Network for InSitu Expression and Embryological Data (RRID:SCR_013030) Copy   


http://rarediseases.info.nih.gov/GARD/Default.aspx

Genetic and Rare Diseases Information Center (GARD) is a collaborative effort of two agencies of the National Institutes of Health, The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) to help people find useful information about genetic conditions and rare diseases. GARD provides timely access to experienced information specialists who can furnish current and accurate information about genetic and rare diseases. So far, GARD has responded to 27,635 inquiries on about 7,147 rare and genetic diseases. Requests come not only from patients and their families, but also from physicians, nurses and other health-care professionals. GARD also has proved useful to genetic counselors, occupational and physical therapists, social workers, and teachers who work with people with a genetic or rare disease. Even scientists who are studying a genetic or rare disease and who need information for their research have contacted GARD, as have people who are taking part in a clinical study. Community leaders looking to help people find resources for those with genetic or rare diseases and advocacy groups who want up-to-date disease information for their members have contacted GARD. And members of the media who are writing stories about genetic or rare diseases have found the information GARD has on hand useful, accurate and complete. GARD has information on: :- What is known about a genetic or rare disease. :- What research studies are being conducted. :- What genetic testing and genetic services are available. :- Which advocacy groups to contact for a specific genetic or rare disease. :- What has been written recently about a genetic or rare disease in medical journals. GARD information specialists get their information from: :- NIH resources. :- Medical textbooks. :- Journal articles. :- Web sites. :- Advocacy groups, and their literature and services. :- Medical databases.

Proper citation: Genetic and Rare Diseases Information Center (RRID:SCR_008695) Copy   


  • RRID:SCR_014818

    This resource has 500+ mentions.

http://www.novocraft.com/products/novoalign/

Software tool designed for mapping short reads onto a reference genome generated from Illumina, Ion Torrent, and 454 NGS platforms. Its features include paired end alignment, methylation status analysis, automatic base quality calibration, and in built adapter trimming and base quality trimming.

Proper citation: NovoAlign (RRID:SCR_014818) Copy   


  • RRID:SCR_005259

    This resource has 1+ mentions.

http://compbio.cs.brown.edu/projects/gasv/

Software tool combining both paired read and read depth signals into probabilistic model which can analyze multiple alignments of reads. Used to find structural variation in both normal and cancer genomes using data from variety of next-generation sequencing platforms. Used to predict structural variants directly from aligned reads in SAM/BAM format.Combines read depth information along with discordant paired read mappings into single probabilistic model two common signals of structural variation. When multiple alignments of read are given, GASVPro utilizes Markov Chain Monte Carlo procedure to sample over the space of possible alignments.

Proper citation: GASVPro (RRID:SCR_005259) Copy   


  • RRID:SCR_005233

    This resource has 1+ mentions.

http://gds.nih.gov/

NIH established expectations for sharing data obtained through NIH-funded genome-wide association studies (GWAS) with the implementation of the GWAS Policy. Information and resources related to the GWAS Policy can be found on this website.

Proper citation: Genomic Datasharing (RRID:SCR_005233) Copy   


  • RRID:SCR_005186

    This resource has 1+ mentions.

http://seqant.genetics.emory.edu/

A free web service and open source software package that performs rapid, automated annotation of DNA sequence variants (single base mutations, insertions, deletions) discovered with any sequencing platform. Variant sites are characterized with respect to their functional type (Silent, Replacement, 5' UTR, 3' UTR, Intronic, Intergenic), whether they have been previously submitted to dbSNP, and their evolutionary conservation. Annotated variants can be viewed directly on the web browser, downloaded in a tab delimited text file, or directly uploaded in a Browser Extended Data (BED) format to the UCSC genome browser. SeqAnt further identifies all loci harboring two or more coding sequence variants that help investigators identify potential compound heterozygous loci within exome sequencing experiments. In total, SeqAnt resolves a significant bottleneck by allowing an investigator to rapidly prioritize the functional analysis of those variants of interest.

Proper citation: SeqAnt (RRID:SCR_005186) Copy   


  • RRID:SCR_005375

    This resource has 10000+ mentions.

http://bejerano.stanford.edu/prism/public/html/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: PRISM (Stanford database) (RRID:SCR_005375) Copy   


http://www.yandell-lab.org/software/mwas.html

The MAKER Web Annotation Service (MWAS) is an easily configurable web-accessible genome annotation pipeline. It''''s purpose is to allow research groups with small to intermediate amounts of eukaryotic and prokaryotic genome sequence (i.e. BAC clones, small whole genomes, preliminary sequencing data, etc.) to independently annotate and analyze their data and produce output that can be loaded into a genome database. MWAS is build on the stand alone genome annotation pipeline MAKER, and users who wish to annotate larger datasets and whole genomes are free to download MAKER for use on their own systems. MWAS identifies repeats, aligns ESTs and proteins to a genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence-based quality values. MWAS can also automatically train popular gene prediction algorithms for use on new genomes for which pre-existing information is limited. MAKER is a member of the Generic Model Organism Database (GMOD) project and output produced by this site can be directly used with other GMOD tools. Annotations can be directly viewed online by the user via GBrowse, JBrowse, and Apollo, or they can be downloaded for local analysis and integration into a genome database. MWAS also supplies summary statistics on sequence features via the Sequence Ontology tool SOBA. MWAS should prove especially useful for emerging model organism genome projects with minimal bioinformatics expertise and computer resources, since a user can produce final genome annotations without having to install and configure any software locally.

Proper citation: MAKER Web Annotation Service (RRID:SCR_005318) Copy   


  • RRID:SCR_005507

    This resource has 100+ mentions.

http://microbesonline.org/

MicrobesOnline is designed specifically to facilitate comparative studies on prokaryotic genomes. It is an entry point for operon, regulons, cis-regulatory and network predictions based on comparative analysis of genomes. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

Proper citation: MicrobesOnline (RRID:SCR_005507) Copy   


http://www.cbs.dtu.dk/ws/ws.php?entry=BLASTatlas

The BLASTatlas is a tool that is useful for mapping and visualizing whole genome homology of genes and proteins within a reference strain compared to other strains or species of one or more prokaryotic organisms using either blastp, blastn, tblastn, or blastx. DNA structural information is also included in the atlas to visualize the DNA chromosomal context of regions. Additional information can be added to these plots. The tool is SOAP compliant and WSDL (web services description language) files are available with programming examples available in Perl. The resolution is per-residue or per nucleotide depending on the regime of the blast search: For each annotation in the reference genome, the best hit in the database genome is found using one of the above algorithms. Each matching or mismatching residue/nucleotide of the best hit (based on BLAST score) is then mapped back to the genome sequence, using the coordinates provided in the annotations. By providing an interoperable method to carry out whole genome visualization of homology, this service offers bioinformaticians as well as biologists an easy-to-adopt workflow that can be directly called from the programming language of the user, hence enabling automation of repeated tasks. This tool can be relevant in many pangenomic as well as in metagenomic studies, by giving a quick overview of clusters of insertion sites, genomic islands and overall homology between a reference sequence and a data set.

Proper citation: BLASTatlas - Mapping of whole genome homology (RRID:SCR_005891) Copy   


  • RRID:SCR_005917

    This resource has 500+ mentions.

http://www.vectorbase.org

Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.

Proper citation: VectorBase (RRID:SCR_005917) Copy   


  • RRID:SCR_005829

    This resource has 5000+ mentions.

http://www.ebi.ac.uk/Tools/pfa/iprscan/

Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.

Proper citation: InterProScan (RRID:SCR_005829) Copy   


  • RRID:SCR_005942

    This resource has 10+ mentions.

http://bio-bigdata.hrbmu.edu.cn/diseasemeth/

Human disease methylation database. DiseaseMeth version 2.0 is focused on aberrant methylomes of human diseases. Used for understanding of DNA methylation driven human diseases.

Proper citation: DiseaseMeth (RRID:SCR_005942) Copy   


  • RRID:SCR_005780

    This resource has 10000+ mentions.

Ratings or validation data are available for this resource

http://genome.ucsc.edu/

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy   


  • RRID:SCR_005971

    This resource has 10+ mentions.

http://vbrc.org/index.asp

One of eight Bioinformatics Resource Centers nationwide providing comprehensive web-based genomics resources including a relational database and web application supporting data storage, annotation, analysis, and information exchange to support scientific research directed at viruses belonging to the Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, Paramyxoviridae, Poxviridae, and Togaviridae families. These centers serve the scientific community and conduct basic and applied research on microorganisms selected from the NIH/NIAID Category A, B, and C priority pathogens that are regarded as possible bioterrorist threats or as emerging or re-emerging infectious diseases. The VBRC provides a variety of analytical and visualization tools to aid in the understanding of the available data, including tools for genome annotation, comparative analysis, whole genome alignments, and phylogenetic analysis. Each data release contains the complete genomic sequences for all viral pathogens and related strains that are available for species in the above-named families. In addition to sequence data, the VBRC provides a curation for each virus species, resulting in a searchable, comprehensive mini-review of gene function relating genotype to biological phenotype, with special emphasis on pathogenesis.

Proper citation: VBRC (RRID:SCR_005971) Copy   


http://www.hcvdb.org/

The Hepatitis C Virus Database (HCVdb) is a cooperative project of several groups with the mission of providing to the scientific community studying the hepatitis C virus a comprehensive battery of informational and analytical tools. The Viral Bioinformatics Resource Center (VBRC), the Immune Epitope Database and Analysis Resource (IEDB), the Broad Institute Microbial Sequencing Center (MSC), and the Los Alamos HCV Sequence Database (HCV-LANL) are combining forces to acquire and annotate data on Hepatitis C virus, and to develop and utilize new tools to facilitate the study of this group of organisms.

Proper citation: Hepatitis C Virus Database (HCVdb) (RRID:SCR_005718) Copy   


  • RRID:SCR_015482

    This resource has 1000+ mentions.

https://www.encodeproject.org/

Consortium to build comprehensive parts list of functional elements in human genome. This includes elements that act at protein and RNA levels, and regulatory elements that control cells and circumstances in which gene is active. Data from 2012-present.

Proper citation: Encode (RRID:SCR_015482) Copy   


  • RRID:SCR_015846

    This resource has 1+ mentions.

http://www.iu.edu/~beca/

Visualization and analysis software for interactive visual exploration and mining of fiber-tracts and brain networks with their genetic determinants and functional outcomes. BECA includes an fMRI and Diseases Analysis version as well as a Genome Explorer version.

Proper citation: BECA (RRID:SCR_015846) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X