Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.thomaskoenig.ch/Lester/ibaspm.htm
The aim of this work is to present a toolbox for structure segmentation of structural MRI images. All programs were developed in MATLAB based on a widely used fMRI, MRI software package, SPM99, SPM2, SPM5 (Wellcome Department of Cognitive Neurology, London, UK). Other previous works have developed a similar strategy for obtaining the segmentation of individual MRI image into different anatomical structures using a standardized Atlas. Have to be mentioned the one introduced by Montreal Neurological Institute (MNI) that merges the information coming from ANIMAL (algorithm that deforms one image (nonlinear registration) to match previously labelled) and INSECT (Cerebral Tissue Classification) programs for obtaining a suitable gross cortical structure segmentation (Collins et al, 1999). Here both, nonlinear registration and gray matter segmentation processes have been performed through SPM99, SPM2, SPM5 subroutines. Three principal elements for the labeling process are used: gray matter segmentation, normalization transform matrix (that maps voxels from individual space to standardized one) and MaxPro MNI Atlas. All three are combined to yield a good performance in segmenting gross cortical structures. The programs here can be used in general for any standardized Atlas and any MRI image modality. System Requirements: 1. The IBASPM graphical user interface (GUI) runs only under MATLAB 7.0 or higher. The non-graphical version runs under MATLAB 6.5 or higher. 2. Statistical Parametrical Mapping Software SPM2, SPM5 Main Functions: * Atlasing: Main function ( This file contains spm_select script from SPM5 toolbox and uigetdir script from MATLAB 7.0 ). * Auto_Labeling : Computes individual atlas. * Create_SPAMs : Constructs Statistical Probability Anatomy Maps (SPAMs). * Create_MaxProb : Creates Maximum Probability Atlas (MaxPro) using the SPAMs previously computed. * All_Brain_Vol : Computes whole brain volume masking the brain using the segmentation files (if the segmentation files does not exist it segments). * Struct_Vol : Computes the volume for different structures based on individual Atlas previously obtained by the atlasing process. * Vols_Stats : Computes mean and standard deviation for each structure in a group of individual atlases.
Proper citation: IBASPM: Individual Brain Atlases using Statistical Parametric Mapping Software (RRID:SCR_007110) Copy
A blog featuring articles on the brain, consciousness, cognitive science, psychology and neurology. This resource is in Russian.
Proper citation: Brain Mysteries (RRID:SCR_000504) Copy
http://titan.biotec.uiuc.edu/bee/honeybee_project.htm
A database integrating data from the bee brain EST sequencing project with data from sequencing and gene research projects from other organisms, primarily the fruit fly Drosophila melanogaster. The goal of Bee-ESTdb is to provide updated information on the genes of the honey bee, currently using annotation primarily from flies to suggest cellular roles, biological functions, and evolutionary relationships. The site allows searches by sequence ID, EST annotations, Gene Ontology terms, Contig ID and using BLAST. Very nice resource for those interested in comparative genomics of brain. A normalized unidirectional cDNA library was made in the laboratory of Prof. Bento Soares, University of Iowa. The library was subsequently subtracted. Over 20,000 cDNA clones were partially sequenced from the normalized and subtracted libraries at the Keck Center, resulting in 15,311 vector-trimmed, high-quality, sequences with an average read length of 494 bp. and average base-quality of 41. These sequences were assembled into 8966 putatively unique sequences, which were tested for similarity to sequences in the public databases with a variety of BLAST searches. The Clemson University Genomics Institute is the distributor of these public domain cDNA clones. For information on how to purchase an individual clone or the entire collection, please contact www.genome.clemson.edu/orders/ or generobi (at) life.uiuc.edu.
Proper citation: Honey Bee Brain EST Project (RRID:SCR_002389) Copy
http://www.fmri.wfubmc.edu/cms/software
Research group based in the Department of Radiology of Wake Forest University School of Medicine devoted to the application of novel image analysis methods to research studies. The ANSIR lab also maintains a fully-automated functional and structural image processing pipeline supporting the image storage and analysis needs of a variety of scientists and imaging studies at Wake Forest. Software packages and toolkits are currently available for download from the ANSIR Laboratory, including: WFU Biological Parametric Mapping Toolbox, WFU_PickAtlas, and Adaptive Staircase Procedure for E-Prime.
Proper citation: Advanced Neuroscience Imaging Research Laboratory Software Packages (RRID:SCR_002926) Copy
An integrated exploration of biomedical literature and data. An anatomy viewer can be accessed and searches of PubMed literature are visualized as to the anatomical regions that they effect. PubAnatomy takes advantage of the 25-micron voxel level mouse brain structure annotation generated by the Allen Brain Institute and integrates Allen Brain Atlas gene expression data, relationships between brain regions and diseases for more efficient exploration of Medline database and gene expression data.
Proper citation: PubAnatomy (RRID:SCR_007999) Copy
http://www.ebi.ac.uk/asd/aedb/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 27, 2013. A manual generated database for alternative exons and their properties from numerous species - the data is gathered from literature where these exons have been experimentally verified. Most alternative exons are cassette exons and are expressed in more than two tissues. Of all exons whose expression was reported to be specific for a certain tissue, the majority were expressed in the brain. At the moment, AEdb products that are available are sequence (a database of alternative exons), function (a database of functions attributed to constitutive and alternative exon), regulatory sequence (a database of transcript regulatory motifs), minigenes (a table of minigenes and their associations to splicing events), and diseases (a table of diseases associated with splicing and their associations to AltSplice). Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. The continuation and upgrade of the ASD consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database of computationally delineated alternative splicing events. Its data include alternatively spliced introns/exons, events, isoform splicing patterns and isoform peptide sequences. AltSplice data are generated by examining gene-transcript alignments. The data are annotated for various biological features including splicing signals, expression states, (SNP)-mediated splicing and cross-species conservation. AEdb forms the manually curated component of ASD. It is a literature-based data set containing sequence and properties of alternatively spliced exons, functional enumeration of observed splicing events, characterization of observed splicing regulatory elements, and a collection of experimentally clarified minigene constructs.
Proper citation: Alternative Exon Database (RRID:SCR_008157) Copy
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 29,2025. Electroencephalogram (EEG) data recorded from invasive and scalp electrodes. The EEG database contains invasive EEG recordings of 21 patients suffering from medically intractable focal epilepsy. The data were recorded during an invasive pre-surgical epilepsy monitoring at the Epilepsy Center of the University Hospital of Freiburg, Germany. In eleven patients, the epileptic focus was located in neocortical brain structures, in eight patients in the hippocampus, and in two patients in both. In order to obtain a high signal-to-noise ratio, fewer artifacts, and to record directly from focal areas, intracranial grid-, strip-, and depth-electrodes were utilized. The EEG data were acquired using a Neurofile NT digital video EEG system with 128 channels, 256 Hz sampling rate, and a 16 bit analogue-to-digital converter. Notch or band pass filters have not been applied. For each of the patients, there are datasets called ictal and interictal, the former containing files with epileptic seizures and at least 50 min pre-ictal data. the latter containing approximately 24 hours of EEG-recordings without seizure activity. At least 24 h of continuous interictal recordings are available for 13 patients. For the remaining patients interictal invasive EEG data consisting of less than 24 h were joined together, to end up with at least 24 h per patient. An interdisciplinary project between: * Epilepsy Center, University Hospital Freiburg * Bernstein Center for Computational Neuroscience (BCCN), Freiburg * Freiburg Center for Data Analysis and Modeling (FDM).
Proper citation: Electroencephalogram Database: Prediction of Epileptic Seizures (RRID:SCR_008032) Copy
Popular science magazine which includes news and blogs on topics including Health & Medicine, Mind & Brain, Technology, Space, Human origins, Living World, Environment, and Physics & Math. NIF Indexes include: The Brain: DISCOVER blogger, columnist, and contributing editor Carl Zimmer''s monthly column will make your brain happy. Discover Interview: The magazine''s signature in-depth discussion with the leading lights of the world of science Vital Signs: A medical mystery, as written by the doctor involved.
Proper citation: Discover Magazine (RRID:SCR_008787) Copy
The HIV Brain Sequence Database (HIVBrainSeqDB) is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. For inclusion in the database, sequences must: (i) be deposited in Genbank; (ii) include some portion of the HIV env region; (iii) be clonal, amplified directly from tissue; and (iv) be sampled from the brain, or sampled from a patient for which the database already contains brain sequence. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i) brain, brainstem, and spinal cord; (ii) meninges, choroid plexus, and CSF; (iii) blood and lymphoid; and (iv) other (bone marrow, colon, lung, liver, etc). Currently, the database contains 2517 envelope sequences from 90 patients, obtained from 22 published studies. 1272 sequences are from brain; the remaining 1245 are from blood, lymph node, spleen, bone marrow, colon, lung and other non-brain tissues. The database interface utilizes a faceted interface, allowing real-time combination of multiple search parameters to assemble a meta-dataset, which can be downloaded for further analysis. This online resource will greatly facilitate analysis of the genetic aspects of HIV macrophage tropism, HIV compartmentalization and evolution within the brain and other tissue reservoirs, and the relationship of these findings to HIV-associated neurological disorders and other clinical consequences of HIV infection.
Proper citation: HIV Brain Sequence Database (RRID:SCR_008819) Copy
http://www.molecularbrain.org/
MolecularBrain is an attempt to collect, collates, analyze and present the microarray derived gene expression data from various brain regions side by side. Transcription Profile of any gene in Mouse (online) and Human Brain (not yet) can be accessed as a histogram along with links to access various aspects of that gene. The expression levels were calculated from microarray data deposited at GEO (Gene expression omnibus). The molecular brain database could be searched using the built in search tool with the terms Entrez GeneID, gene symbol, synonym or description. Gene information along with their expression values can be also accessed from the alphabetical list of gene symbols on the footer. The protocol and GEO sample information is available.
Proper citation: Molecular Brain: Transcription Profiles of Mouse and Human Brains (RRID:SCR_008689) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented December 31, 2013. An interactive atlas and 3D brain software for research, structure analysis, and education, it offers six atlases representing four species: the mouse, rat, monkey and human. The stereotaxic coordinates atlases are available for all four species and the rodent models have additional chemoarchitectonic atlases. BrainNavigator helps locate specific areas of the brain, making visualizing and experimental planning in the brain easier. *Plan: Browse 6 Atlases, Visualize with 3D models, Search Literature, Analyze gene expression, Identify connections *Publish: Access reference tools, Use and print images for publication, Search literature *Propose: Use and print images for proposals, Search literature, Locate gene expression in 2D and 3D, Identify connections *Produce: Simulate injections, Customize new coordinates, virtually slice sections, overlay atlas maps on your own images, create personal atlas maps With BrainNavigator, you''ll gain 24/7 access to their powerful 3D brain interactive software tool that helps further research in the neurosciences. In addition, their vast library of widely respected and referenced brain publications will provide a plethora of information on the most current brain research available. As publisher of the gold standard in brain atlas publications authored by the team around the leading brain cartographers George Paxinos and Charles Watson, they are pleased to bring an advanced tool to today''s neuroscientists and educators. Combining atlas content and 3D capabilities based on technologies from the Allen Institute for Brain Science, this online workflow solution brings brain research, analysis and education tools to your fingertips.
Proper citation: BrainNavigator (RRID:SCR_008289) Copy
http://neuromorphometrics.com/?page_id=23
Collection of neuroanatomically labeled MRI brain scans, created by neuroanatomical experts. Regions of interest include the sub-cortical structures (thalamus, caudate, putamen, hippocampus, etc), along with ventricles, brain stem, cerebellum, and gray and white matter and sub-divided cortex into parcellation units that are defined by gyral and sulcal landmarks.
Proper citation: Manually Labeled MRI Brain Scan Database (RRID:SCR_009604) Copy
http://www.functionalneurogenesis.com/blog/
A blog focusing on the function of adult neurogenesis in the dentate gyrus of the hippocampus, including discussion of scientific research papers, methods and protocols, and other trends or observations about the field.
Proper citation: Functional Neurogenesis (RRID:SCR_008830) Copy
A large multi-site pediatric MRI and genetics data resource to facilitate studies of the genomic landscape of the developing human brain. It includes information about the developing mental and emotional functions of the children to understand the genetic basis of individual differences in brain structure and connectivity, cognition, and personality. Investigators on the project are studying 1400 children between the ages of 3 and 20 years so that links between genetic variation and developing patterns of brain connectivity can be examined. Investigators interested in the effects of a particular gene will be able to search the database for any brain areas or connections between areas that differ as a function of variation in a particular gene, and also to determine if the genes appear to affect the course of brain development at some point during childhood. A data exploration tool has been created for mapping and analyzing MRI data sets collected for PING and related developmental studies. Approved investigators will be able to view raw image sets and derived 3D brain maps of MRI and DTI data, conduct hypothesis testing, and graph brain area measures as they change across the time course of development. PING Cores * Coordinating Core: Functions include project management, screening of participants and maintaining the database * Neuroimaging Core: applying a standardized high-resolution structural MRI protocol involving 3-D T1-weighted scans, a T2-weighted volume, and a set of diffusion-weighted scans with multiple b values and diffusion directions, scans to estimate MRI relaxation rates, and gradient echo EPI scans for resting state fMRI. Importantly, adaptive motion compensation, using ����??PROMO����??, a novel real-time motion correction algorithm will be used. Specific PING protocols for each scanner manufacturer: ** PING MRI Protocol - GE ** PING MRI Protocol - Philips ** PING MRI Protocol - Siemens * Assessment Core: Cognitive assessments for the PING project are conducted using the NIH Toolbox for Cognition. * Genomics Core: functions as a central repository for receipt of saliva samples collected for each study participant. Once received, samples are catalogued, maintained, and DNA is extracted using state-of-the-field laboratory techniques. Ultimately, genome-wide genotyping is performed on the extracted DNA using the Illumina Human660W-Quad BeadChip. PING involves 10 sites throughout the country including UCSD, University of Hawaii, Scripps Genomics, UCLA, UC Davis, Kennedy Krieger Institute/Johns Hopkins, Sacker Institute/Cornell University, University of Massachusetts, Massachusetts General Hospital/Harvard, and Yale. Families who may want to participate in the study, or others who want to know more about it, may email questions to ping (at) ucsd.edu.
Proper citation: Pediatric Imaging Neurocognition and Genetics (RRID:SCR_008953) Copy
http://connectivity.brain-map.org/
Map of neural connections in mouse brain, built on an array of transgenic mice genetically engineered to target specific cell types. In addition to the connectivity data, information about the transgenic mouse lines and genetic tracers is available. Consists of high resolution 2-D projectivity image data that can be viewed side-by-side with the associated reference atlas and other reference datasets. Enables 3-D visualization and spatial/ontological search of connectivity models through a combination of manual and informatics analyses.
Proper citation: Allen Mouse Brain Connectivity Atlas (RRID:SCR_008848) Copy
http://www.msbrainbank.org.au/
Biomaterial supply resource which provides high quality and well-chracaterized brain tissue samples for MS research. Registered MS brain donors and their families are kept up to date on the latest progress in MS research.
Proper citation: Multiple Sclerosis Research Australia Brain Bank (RRID:SCR_010747) Copy
http://www.cdtdb.brain.riken.jp/CDT/Top.jsp
Transcriptomic information (spatiotemporal gene expression profile data) on the postnatal cerebellar development of mice (C57B/6J & ICR). It is a tool for mining cerebellar genes and gene expression, and provides a portal to relevant bioinformatics links. The mouse cerebellar circuit develops through a series of cellular and morphological events, including neuronal proliferation and migration, axonogenesis, dendritogenesis, and synaptogenesis, all within three weeks after birth, and each event is controlled by a specific gene group whose expression profile must be encoded in the genome. To elucidate the genetic basis of cerebellar circuit development, CDT-DB analyzes spatiotemporal gene expression by using in situ hybridization (ISH) for cellular resolution and by using fluorescence differential display and microarrays (GeneChip) for developmental time series resolution. The CDT-DB not only provides a cross-search function for large amounts of experimental data (ISH brain images, GeneChip graph, RT-PCR gel images), but also includes a portal function by which all registered genes have been provided with hyperlinks to websites of many relevant bioinformatics regarding gene ontology, genome, proteins, pathways, cell functions, and publications. Thus, the CDT-DB is a useful tool for mining potentially important genes based on characteristic expression profiles in particular cell types or during a particular time window in developing mouse brains.
Proper citation: Cerebellar Development Transcriptome Database (RRID:SCR_013096) Copy
http://findlab.stanford.edu/functional_ROIs.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 29,2023. Atlas of functional ROIs (fROIs) containing 499 regions, with extensive gray matter coverage. Atlases are available for download directly from the website.
Proper citation: 499 fROI atlas (RRID:SCR_014756) Copy
https://senselab.med.yale.edu/MicroCircuitDB/
A database for storing and efficiently retrieving realistic computational models of brain microcircuits and networks. The focus is on microcircuits that are based on experimentally demonstrated properties of neurons and their connectivity.
Proper citation: MicrocircuitDB (RRID:SCR_014577) Copy
https://www.mcdb.ucla.edu/Research/Hartenstein/dbla/index.html
Atlas providing structure and development of Drosophila brain lineages. Used to learn about projection pattern of lineages as first step towards reconstructing and understanding all neurons.
Proper citation: Drosphila Brain Lineage Atlas (RRID:SCR_017507) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.