Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://bioinformatics.psb.ugent.be/orcae/
Online genome annotation tool for validating and correcting gene annotations. OrcAE is community-driven and can be edited by account-holders in the research community.
Proper citation: Online Resource for Community Annotation of Eukaryotes (RRID:SCR_014989) Copy
http://www.mybiosoftware.com/seaview-4-2-12-sequence-alignment-phylogenetic-tree-building.html
Graphical user interface for multiple sequence alignment and molecular phylogeny. SeaView also generates phylogenetic trees.
Proper citation: SeaView (RRID:SCR_015059) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 29,2023. Software tool for the analysis of cross-linking/mass spectrometry datasets using MS-cleavable cross-linkers. MeroX is specialized for MS/MS-cleavable cross linking reagents and identifies the specific fragmentation products of the cleavable cross links.
Proper citation: MeroX (RRID:SCR_014956) Copy
Software tool to quantitatively measure genome assembly and annotation completeness based on evolutionarily informed expectations of gene content.
Proper citation: BUSCO (RRID:SCR_015008) Copy
https://sourceforge.net/projects/giira/
Gene prediction method that identifies potential coding regions based on the mapping of reads from an RNA-Seq experiment.
Proper citation: GIIRA (RRID:SCR_015507) Copy
http://corneliu.henegar.info/FunCluster.htm
FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FunCluster (RRID:SCR_005774) Copy
http://www.ebi.ac.uk/Tools/pfa/iprscan/
Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.
Proper citation: InterProScan (RRID:SCR_005829) Copy
ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.
Proper citation: ToppGene Suite (RRID:SCR_005726) Copy
http://crdd.osdd.net/raghava/ccpdb/
ccPDB (Compilation and Creation of datasets from PDB) is designed to provide service to scientific community working in the field of function or structure annoation of proteins. This database of datasets is based on Protein Data Bank (PDB), where all datasets were derived from PDB. ccPDB have four modules; i) compilation of datasets, ii) creation of datasets, iii) web services and iv) Important links. * Compilation of Datasets: Datasets at ccPDB can be classified in two categories, i) datasets collected from literature and ii) datasets compiled from PDB. We are in process of collecting PDB datasetsfrom literature and maintaining at ccPDB. We are also requesting community to suggest datasets. In addition, we generate datasets from PDB, these datasets were generated using commonly used standard protocols like non-redundant chains, structures solved at high resolution. * Creation of datasets: This module developed for creating customized datasets where user can create a dataset using his/her conditions from PDB. This module will be useful for those users who wish to create a new dataset as per ones requirement. This module have six steps, which are described in help page. * Web Services: We integrated following web services in ccPDB; i) Analyze of PDB ID service allows user to submit their PDB on around 40 servers from single point, ii) BLAST search allows user to perform BLAST search of their protein against PDB, iii) Structural information service is designed for annotating a protein structure from PDB ID, iv) Search in PDB facilitate user in searching structures in PDB, v)Generate patterns service facility to generate different types of patterns required for machine learning techniques and vi) Download useful information allows user to download various types of information for a given set of proteins (PDB IDs). * Important Links: One of major objectives of this web site is to provide links to web servers related to functional annotation of proteins. In first phase we have collected and compiled these links in different categories. In future attempt will be made to collect as many links as possible.
Proper citation: ccPDB - Compilation and Creation of datasets from PDB (RRID:SCR_005870) Copy
UTRdb/UTRsite is a portal to other databases, including Nucleotide Sequence Databases, Protein Sequence Databases, other Sequence databanks, Untranslated Nucleotide Sequence Databases, Mitochondrial Databases, Mutation Databases, and others. The site also allows users to start long-term permanent projects or just to do quick searches, depending on the user''s needs.
Proper citation: UTRdb/UTRsite (RRID:SCR_005868) Copy
http://estscan.sourceforge.net/
ESTScan is a program that can detect coding regions in DNA sequences, even if they are of low quality. ESTScan will also detect and correct sequencing errors that lead to frameshifts. ESTScan is not a gene prediction program , nor is it an open reading frame detector. In fact, its strength lies in the fact that it does not require an open reading frame to detect a coding region. As a result, the program may miss a few translated amino acids at either the N or the C terminus, but will detect coding regions with high selectivity and sensitivity. ESTScan takes advantages of the bias in hexanucleotide usage found in coding regions relative to non-coding regions. This bias is formalized as an inhomogeneous 3-periodic fifth-order Hidden Markov Model (HMM). Additionally, the HMM of ESTScan has been extended to allows insertions and deletions when these improve the coding region statistics.
Proper citation: ESTScan (RRID:SCR_005742) Copy
http://bio-bigdata.hrbmu.edu.cn/diseasemeth/
Human disease methylation database. DiseaseMeth version 2.0 is focused on aberrant methylomes of human diseases. Used for understanding of DNA methylation driven human diseases.
Proper citation: DiseaseMeth (RRID:SCR_005942) Copy
The DistiLD database aims to increase the usage of existing genome-wide association studies (GWAS) results by making it easy to query and visualize disease-associated SNPs and genes in their chromosomal context. The database performs three important tasks: # published GWAS are collected from several sources and linked to standardized, international disease codes ICD10 codes) # data from the International HapMap Project are analyzed to define linkage disequilibrium (LD) blocks onto which SNPs and genes are mapped # the web interface makes it easy to query and visualize disease-associated SNPs and genes within LD blocks. Users can query the database by diseases, SNPs or genes. No matter which of the three query modes was used, an intermediate page will be shown listing all the studies that matched the search with a link to the corresponding publication. The user can select either all studies related to a certain disease or one specific study for which to view the related LD blocks. The DistiLD resource integrates information on: * Associations between Single Nucleotide Polymorphisms (SNPs) and diseases from genome-wide association studies (GWAS) * Links between SNPs and genes based on linkage disequilibrium (LD) data from HapMap For convenience, we provide the complete datasets as two (zipped) tab-delimited files. The first file contains GWAS results mapped to LD blocks. The second file contains all SNPs and genes assigned to each LD block.
Proper citation: DistiLD - Diseases and Traits in LD (RRID:SCR_005943) Copy
http://newt-omics.mpi-bn.mpg.de/index.php
Newt-omics is a database, which enables researchers to locate, retrieve and store data sets dedicated to the molecular characterization of newts. Newt-omics is a transcript-centered database, based on an Expressed Sequence Tag (EST) data set from the newt, covering ~50,000 Sanger sequenced transcripts and a set of high-density microarray data, generated from regenerating hearts. Newt-omics also contains a large set of peptides identified by mass spectrometry, which was used to validate 13,810 ESTs as true protein coding. Newt-omics is open to implement additional high-throughput data sets without changing the database structure. Via a user-friendly interface Newt-omics allows access to a huge set of molecular data without the need for prior bioinformatical expertise. The newt Notopthalmus viridescens is the master of regeneration. This organism is known for more than 200 years for its exceptional regenerative capabilities. Newts can completely replace lost appendages like limb and tail, lens and retina and parts of the central nervous system. Moreover, after cardiac injury newts can rebuild the functional myocardium with no scar formation. To date only very limited information from public databases is available. Newt-Omics aims to provide a comprehensive platform of expressed genes during tissue regeneration, including extensive annotations, expression data and experimentally verified peptide sequences with yet no homology to other publicly available gene sequences. The goal is to obtain a detailed understanding of the molecular processes underlying tissue regeneration in the newt, that may lead to the development of approaches, efficiently stimulating regenerative pathways in mammalians. * Number of contigs: 26594 * Number of est in contigs: 48537 * Number of transcripts with verified peptide: 5291 * Number of peptides: 15169
Proper citation: Newtomics (RRID:SCR_006073) Copy
http://www.nematodes.org/nembase4/
NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Proper citation: NEMBASE (RRID:SCR_006070) Copy
http://hfv.lanl.gov/content/index
The Hemorrhagic Fever Viruses (HFV) sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55,000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide.
Proper citation: HFV Database (RRID:SCR_006017) Copy
http://sourceforge.net/projects/bless-ec/
Software tool for Bloom-filter-based error correction for next-generation sequencing (NGS) reads. The algorithm produces accurate correction results with much less memory.
Proper citation: BLESS (RRID:SCR_005963) Copy
http://jjwanglab.org:8080/gwasdb/
Combines collections of genetic variants (GVs) from GWAS and their comprehensive functional annotations, as well as disease classifications. Used to maximize utilility of GWAS data to gain biological insights through integrative, multi-dimensional functional annotation portal. In addition to all GVs annotated in NHGRI GWAS Catalog, we manually curate GVs that are marginally significant (P value < 10-3) by looking into supplementary materials of each original publication and provide extensive functional annotations for these GVs. GVs are manually classified by diseases according to Disease Ontology Lite and HPO (Human Phenotype Ontology) for easy access. Database can also conduct gene based pathway enrichment and PPI network association analysis for those diseases with sufficient variants. SOAP services are available. You may Download GWASdb SNP. (This file contains all of the significant SNP in GWASdb. In the pvalue column, 0 means this P-value is not reported in the study but it is significant SNP. In the source column, GWAS:A represents the original data in GWAS catalog, while GWAS:B is our curation data which P-value < 10-3)
Proper citation: GWASdb (RRID:SCR_006015) Copy
http://equilibrator.weizmann.ac.il/
Web interface designed for thermodynamic analysis of biochemical systems. eQuilibrator enables free-text search for biochemical compounds and reactions and provides thermodynamic estimates for both in a variety of conditions. It can provide estimates for compounds in the KEGG database, and individual compounds and enzymes can be searched for by their common names (water, glucosamine, hexokinase). Reactions can be entered in a free-text format that eQuilibrator parses automatically. eQuilibrator also allows manipulation of the conditions of a reaction - pH, ionic strength, and reactant and product concentrations.
Proper citation: eQuilibrator (RRID:SCR_006011) Copy
http://aias.biol.uoa.gr/OMPdb/
A database of Beta-barrel outer membrane proteins from Gram-negative bacteria. The web interface of OMPdb offers the user the ability not only to view the available data, but also to submit advanced queries for text search within the database''s protein entries or run BLAST searches against the database. The most up-to-date version of the database (as well as all past versions) can be downloaded in various formats (flat text, XML format or raw FASTA sequences). For constructing OMPdb, multiple freely accessible resources were combined and a detailed literature search was performed. The classification of OMPdb''s protein entries into families is based mainly on structural and functional criteria. Information included in the database consists of sequence data, as well as annotation for structural characteristics (such as the transmembrane segments), literature references and links to other public databases, features that are unique worldwide. Along with the database, a collection of profile Hidden Markov Models that were shown to be characteristic for Beta-barrel outer membrane proteins was also compiled. This set, when used in combination with our previously developed algorithms (PRED-TMBB, MCMBB and ConBBPRED) will serve as a powerful tool in matters of discrimination and classification of novel Beta-barrel proteins and whole-genome analyses., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: OMPdb (RRID:SCR_006221) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.