Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.patricbrc.org/portal/portal/patric/Home
A Bioinformatics Resource Center bacterial bioinformatics database and analysis resource that provides researchers with an online resource that stores and integrates a variety of data types (e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data) and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. The PATRIC project includes three primary collaborators: the University of Chicago, the University of Manchester, and New City Media. The University of Chicago is providing genome annotations and a PATRIC end-user genome annotation service using their Rapid Annotation using Subsystem Technology (RAST) system. The National Centre for Text Mining (NaCTeM) at the University of Manchester is providing literature-based text mining capability and service. New City Media is providing assistance in website interface development. An FTP server and download tool are available.
Proper citation: Pathosystems Resource Integration Center (RRID:SCR_004154) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
Database of all of the publicly available, complete prokaryotic genomes. In addition to having all of the organisms on a single website, common data types across all genomes in the CMR make searches more meaningful, and cross genome analysis highlight differences and similarities between the genomes. CMR offers a wide variety of tools and resources, all of which are available off of our menu bar at the top of each page. Below is an explanation and link for each of these menu options. * Genome Tools: Find organism lists as well as summary information and analyses for selected genomes. * Searches: Search CMR for genes, genomes, sequence regions, and evidence. * Comparative Tools: Compare multiple genomes based on a variety of criteria, including sequence homology and gene attributes. SNP data is also found under this menu. * Lists: Select and download gene, evidence, and genomic element lists. * Downloads: Download gene sequences or attributes for CMR organisms, or go to our FTP site. * Carts: Select genome preferences from our Genome Cart or download your Gene Cart genes. The Omniome is the relational database underlying the CMR and it holds all of the annotation for each of the CMR genomes, including DNA sequences, proteins, RNA genes and many other types of features. Associated with each of these DNA features in the Omniome are the feature coordinates, nucleotide and protein sequences (where appropriate), and the DNA molecule and organism with which the feature is associated. Also available are evidence types associated with annotation such as HMMs, BLAST, InterPro, COG, and Prosite, as well as individual gene attributes. In addition, the database stores identifiers from other centers such as GenBank and SwissProt, as well as manually curated information on each genome or each DNA molecule including website links. Also stored in the Omniome are precomputed homology data, called All vs All searches, used throughout the CMR for comparative analysis.
Proper citation: JCVI CMR (RRID:SCR_005398) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. Database covering a range of plant pathogenic oomycetes, fungi and bacteria primarily those under study at Virginia Bioinformatics Institute. The data comes from different sources and has genomes of 3 oomycetes pathogens: Phytophthora sojae, Phytophthora ramorum and Hyaloperonospora arabidopsidis. The genome sequences (95 MB for P.sojae and 65 MB for P.ramorum) were annotated with approximately 19,000 and approximately 16,000 gene models, respectively. Two different statistical methods were used to validate these gene models, Fickett''''s and a log-likelihood method. Functional annotation of the gene models is based on results from BlastX and InterProScan screens. From the InterProScan results, putative functions to 17,694 genes in P.sojae and 14,700 genes in P.ramorum could be assigned. An easy-to-use genome browser was created to view the genome sequence data, which opens to detailed annotation pages for each gene model. A community annotation interface is available for registered community members to add or edit annotations. There are approximately 1600 gene models for P.sojae and approximately 700 models for P.ramorum that have already been manually curated. A toolkit is provided as an additional resource for users to perform a variety of sequence analysis jobs.
Proper citation: VMD (RRID:SCR_004905) Copy
http://www.plexdb.org/index.php
PLEXdb (Plant Expression Database) is a unified gene expression resource for plants and plant pathogens. PLEXdb is a genotype to phenotype, hypothesis building information warehouse, leveraging highly parallel expression data with seamless portals to related genetic, physical, and pathway data. The integrated tools of PLEXdb allow investigators to use commonalities in plant biology for a comparative approach to functional genomics through use of large-scale expression profiling data sets.
Proper citation: PLEXdb - Plant Expression Database (RRID:SCR_006963) Copy
http://rarediseases.info.nih.gov/GARD/Default.aspx
Genetic and Rare Diseases Information Center (GARD) is a collaborative effort of two agencies of the National Institutes of Health, The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) to help people find useful information about genetic conditions and rare diseases. GARD provides timely access to experienced information specialists who can furnish current and accurate information about genetic and rare diseases. So far, GARD has responded to 27,635 inquiries on about 7,147 rare and genetic diseases. Requests come not only from patients and their families, but also from physicians, nurses and other health-care professionals. GARD also has proved useful to genetic counselors, occupational and physical therapists, social workers, and teachers who work with people with a genetic or rare disease. Even scientists who are studying a genetic or rare disease and who need information for their research have contacted GARD, as have people who are taking part in a clinical study. Community leaders looking to help people find resources for those with genetic or rare diseases and advocacy groups who want up-to-date disease information for their members have contacted GARD. And members of the media who are writing stories about genetic or rare diseases have found the information GARD has on hand useful, accurate and complete. GARD has information on: :- What is known about a genetic or rare disease. :- What research studies are being conducted. :- What genetic testing and genetic services are available. :- Which advocacy groups to contact for a specific genetic or rare disease. :- What has been written recently about a genetic or rare disease in medical journals. GARD information specialists get their information from: :- NIH resources. :- Medical textbooks. :- Journal articles. :- Web sites. :- Advocacy groups, and their literature and services. :- Medical databases.
Proper citation: Genetic and Rare Diseases Information Center (RRID:SCR_008695) Copy
http://www.novocraft.com/products/novoalign/
Software tool designed for mapping short reads onto a reference genome generated from Illumina, Ion Torrent, and 454 NGS platforms. Its features include paired end alignment, methylation status analysis, automatic base quality calibration, and in built adapter trimming and base quality trimming.
Proper citation: NovoAlign (RRID:SCR_014818) Copy
http://www.roslin.ed.ac.uk/alan-archibald/porcine-genome-sequencing-project/
Map of identifyied genes controlling traits of economic and welfare significance in the pig. The project objectives were to produce a genetic map with markers spaced at approximately 20 centiMorgan intervals over at least 90% of the pig genome; to produce a physical map with at least one distal and one proximal landmark locus mapped on each porcine chromosome arm and also genetically mapped; to develop a flow karyotype for the pig based on FACS sorted chromosomes; to develop PCR based techniques to enable rapid genotyping for polymorphic markers; to evaluate synteny conservation between pigs, man, mice and cattle; to develop and evaluate the statistical techniques required to analyze data from QTL mapping experiments and to plan and initiate the mapping of QTLs in the pig; to map loci affecting traits of economic and biological significance in the pig; and to develop the molecular tools to allow the future identification and cloning of mapped loci. Animal breeders currently assume that economically important traits such as growth, carcass composition and reproductive performance are controlled by an infinite number of genes each of infinitessimal effect. Although this model is known to be unrealistic, it has successfully underpinned the genetic improvement of livestock, including pigs, over recent decades. A map of the pig genome would allow the development of more realistic models of the genetic control of economic traits and the ultimately the identification of the major trait genes. This would allow the development of more efficient marker assisted selection which may be of particular value for traits such as disease resistance and meat quality.
Proper citation: Pig Genome Mapping (RRID:SCR_012884) Copy
Database of ascidian embryonic development at the level of the genome (cis-regulatory sequences, gene expression, protein annotation), of the cell (morphology, fate, induction, lineage) or of the whole embryo (anatomy, morphogenesis). Currently, four organism models are described in Aniseed: Ciona intestinalis, Ciona savignyi, Halocynthia roretzi and Phallusia mammillata.
This version supports four sets of Ciona intestinalis transcript models: JGI v1.0, KyotoGrail 2005, KH and ENSEMBL, all functionally annotated, and grouped into Aniseedv3.0 gene models. Users can explore their expression profiles during normal or manipulated development, access validated cis-regulatory regions, get the molecular tools used to assay gene function, or all articles related to the function, or regulation of a given gene. Known transcriptional regulators and targets are listed for each gene, as are the gene regulatory networks acting in individual anatomical territories.
ANISEED is a community tool, and the direct involvement of external contributors is important to optimize the quality of the submitted data. Virtual embryo: The 3D Virtual embryo is available to download in the download section of the website.
Proper citation: Ascidian Network for InSitu Expression and Embryological Data (RRID:SCR_013030) Copy
http://www.ncbi.nlm.nih.gov/CCDS/
Database (anonymous FTP) resulting from a collaborative effort to identify a core set of human and mouse protein coding regions that are consistently annotated and of high quality. The long term goal is to support convergence towards a standard set of gene annotations. Collaborators are EBI, NCBI, UCSC, WTSI and the initial results are also available from the participants'''' genome browser Web sites. In addition, CCDS identifiers are indicated on the relevant NCBI RefSeq and Entrez Gene records and in Map Viewer displays of RNA (RefSeq) and Gene annotations on the reference assembly.
Proper citation: Consensus CDS (RRID:SCR_006729) Copy
http://bioinformatics.biol.uoa.gr/cuticleDB
A relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the five sequenced genomes where manual annotation has been applied to cuticular proteins: Anopheles gambiae, Apis mellifera, Bombyx mori, Drosophila melanogaster, and Nasonia vitripennis. Some sequences were confirmed as authentic cuticular proteins because protein sequencing revealed that they were present in cuticle; others were identified by sequence homology and other criteria. Entries provides information about whether sequences are putative or authentic cuticular proteins. CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.
Proper citation: CuticleDB (RRID:SCR_007045) Copy
Database about gene regulation and gene expression in prokaryotes. It includes a manually curated and unique collection of transcription factor binding sites. A variety of bioinformatics tools for the prediction, analysis and visualization of regulons and gene reglulatory networks is included. The integrated approach provides information about molecular networks in prokaryotes with focus on pathogenic organisms. In detail this concerns: * transcriptional regulation (transcription factors and their DNA binding sites * signal transduction (two-component systems, phosphylation cascades) * protein interactions (complex formation, oligomerization) * biochemical pathways (chemical reactions) * other regulation events (e.g. codon usage, etc. ...) It aims to be a resource to model protein-host interactions and to be a suitable platform to analyze high-throughput data from proteomis and transcriptomics experiments (systems biology). Currently it mainly contains detailed information about operon and promoter structures including huge collections of transcription factor binding sites. If an appropriate number of regulatory binding sites is available, a position weight matrix (PWM) and a sequence logo is provided, which can be used to predict new binding sites. This data is collected manually by screening the original scientific literature. PRODORIC also handles protein-protein interactions and signal-transduction cascades that commonly occur in form of two-component systems in prokaryotes. Furthermore it contains metabolic network data imported from the KEGG database., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRODORIC (RRID:SCR_007074) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
http://www.ncbi.nlm.nih.gov/COG
A database for phylogenetic classification for proteins encoded in complete genomes. Clusters of Orthologous Groups of proteins (COGs) were delineated by comparing protein sequences encoded in complete genomes, representing major phylogenetic lineages. Each COG consists of individual proteins or groups of paralogs from at least 3 lineages and thus corresponds to an ancient conserved domain. Please be aware that COGs hasn't been updated in many years and will not be.
Proper citation: COG (RRID:SCR_007139) Copy
Genome wide map of putative transcription factor binding sites in Arabidopsis thaliana genome.Data in AthaMap is based on published transcription factor (TF) binding specificities available as alignment matrices or experimentally determined single binding sites.Integrated transcriptional and post transcriptional data.Provides web tools for analysis and identification of co-regulated genes. Provides web tools for database assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.
Proper citation: AthaMap (RRID:SCR_006717) Copy
A database and interactive web site for manipulating and displaying annotations on genomes. Features include: detailed views of the genome; use of a variety of premade or personally made glyphs ; customizable order and appearance of tracks by administrators and end-users; search by annotation ID, name, or comment; support of third party annotation using GFF formats; DNA and GFF dumps; connectivity to different databases, including BioSQL and Chado; and a customizable plug-in architecture (e.g. run BLAST, find oligonucleotides, design primers, etc.). GBrowse is distributed as source code for Macintosh OS X, UNIX and Linux platforms, and as pre-packaged binaries for Windows machines. It can be installed using the standard Perl module build procedure, or automated using a network-based install script. In order to use the net installer, you will need to have Perl 5.8.6 or higher and the Apache web server installed. The wiki portion accepts data submissions.
Proper citation: GBrowse (RRID:SCR_006829) Copy
http://bond.unleashedinformatics.com/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.BOND, which requires registration of a free account, is a resource used to perform cross-database searches of available sequence, interaction, complex and pathway information. BOND integrates a range of component databases including GenBank and BIND, the Biomolecular Interaction Network Database. BOND contains 70+ million biological sequences, 33,000 structures, 38,000 GO terms, and over 200,000 human curated interactions contained in BIND, and is open access. BOND serves the interests of the developing global interactome effort encompassing the genomic, proteomic and metabolomic research communities. BOND is the first open access search resource to integrate sequence and interaction information. BOND integrates BLAST functionality, and contains a well-documented API. BOND also stores annotation links for sequences, including links to Genome Ontology descriptions, MedLine abstracts, taxon identifiers, associated structures, redundant sequences, sequence neighbors, conserved domains, data base cross-references, Online Mendalian Inheritance in Man identifiers, LocusLink identifiers and complete genomes. BIND on BOND The Biomolecular Interaction Network Database (BIND), a component database of BOND, is a collection of records documenting molecular interactions. The contents of BIND include high-throughput data submissions and hand-curated information gathered from the scientific literature. BIND is an interaction database with three classifications for molecular associations: molecules that associate with each other to form interactions, molecular complexes that are formed from one or more interaction(s) and pathways that are defined by a specific sequence of two or more interactions.Interactions A BIND record represents an interaction between two or more objects that is believed to occur in a living organism. A biological object can be a protein, DNA, RNA, ligand, molecular complex, gene, photon or an unclassified biological entity. BIND records are created for interactions which have been shown experimentally and published in at least one peer-reviewed journal. A record also references any papers with experimental evidence that support or dispute the associated interaction. Interactions are the basic units of BIND and can be linked together to form molecular complexes or pathways. The BIND interaction viewer is a tool to visualize and analyze molecular interactions, complexes and pathways. The BIND interaction viewer uses Ontoglyphs to display information about a protein via attributes such as molecular function, biological process and sub-cellular localization. Ontoglyphs allow to graphically and interactively explore interaction networks, by visualizing interactions in the context of 34 functional, 25 binding specificity and 24 sub-cellular localization Ontoglyphs categories. We will continue to provide an open access version of BOND, providing its subscribers with free, unlimited access to a core content set. But we are confident you will soon want to upgrade to BONDplus.
Proper citation: Biomolecular Object Network Databank (RRID:SCR_007433) Copy
http://mips.gsf.de/genre/proj/ustilago/
The MIPS Ustilago maydis Genome Database aims to present information on the molecular structure and functional network of the entirely sequenced, filamentous fungus Ustilago maydis. The underlying sequence is the initial release of the high quality draft sequence of the Broad Institute. The goal of the MIPS database is to provide a comprehensive genome database in the Genome Research Environment in parallel with other fungal genomes to enable in depth fungal comparative analysis. The specific aims are to: 1. Generate and assemble Whole Genome Shotgun sequence reads yielding 10X coverage of the U. maydis genome 2. Integrate the genomic sequence assembly with physical maps generated by Bayer CropScience 3. Perform automated annotation of the sequence assembly 4. Align the strain 521 assembly with the FB1 assembly provided by Exelixis 5. Release the sequence assembly and results of our annotation and analysis to public Ustilago maydis is a basidiomycete fungal pathogen of maize and teosinte. The genome size is approximately 20 Mb. The fungus induces tumors on host plants and forms masses of diploid teliospores. These spores germinate and form haploid meiotic products that can be propagated in culture as yeast-like cells. Haploid strains of opposite mating type fuse and form a filamentous, dikaryotic cell type that invades plant tissue to reinitiate infection. Ustilago maydis is an important model system for studying pathogen-host interactions and has been studied for more than 100 years by plant pathologists. Molecular genetic research with U. maydis focuses on recombination, the role of mating in pathogenesis, and signaling pathways that influence virulence. Recently, the fungus has emerged as an excellent experimental model for the molecular genetic analysis of phytopathogenesis, particularly in the characterization of infection-specific morphogenesis in response to signals from host plants. Ustilago maydis also serves as an important model for other basidiomycete plant pathogens that are more difficult to work with in the laboratory, such as the rust and bunt fungi. Genomic sequence of U. maydis will also be valuable for comparative analysis of other fungal genomes, especially with respect to understanding the host range of fungal phytopathogens. The analysis of U. maydis would provide a framework for studying the hundreds of other Ustilago species that attack important crops, such as barley, wheat, sorghum, and sugarcane. Comparisons would also be possible with other basidiomycete fungi, such as the important human pathogen C. neoformans. Commercially, U. maydis is an excellent model for the discovery of antifungal drugs. In addition, maize tumors caused by U. maydis are prized in Hispanic cuisine and there is interest in improving commercial production. The complete putative gene set of the Broad Institute''s second release is loaded into the database and in addition all deviating putative genes from a putative gene set produced by MIPS with different gene prediction parameters are also loaded. The complete dataset will then be analysed, gene predictions will be manually corrected due to combined information derived from different gene prediction algorithms and, more important, protein and EST comparisons. Gene prediction will be restricted to ORFs larger than 50 codons; smaller ORFs will be included only if similarities to other proteins or EST matches confirm their existence or if a coding region was postulated by all prediction programs used. The resulting proteins will be annotated. They will be classified according to the MIPS classification catalogue receiving appropriate descriptions. All proteins with a known, characterized homolog will be automatically assigned to functional categories using the MIPS functional catalog. All extracted proteins are in addition automatically analysed and annotated by the PEDANT suite.
Proper citation: MIPS Ustilago maydis Database (RRID:SCR_007563) Copy
http://genolist.pasteur.fr/Colibri/
Database dedicated to the analysis of the genome of Escherichia coli. Its purpose is to collate and integrate various aspects of the genomic information from E. coli, the paradigm of Gram-negative bacteria. Colibri provides a complete dataset of DNA and protein sequences derived from the paradigm strain E. coli K-12, linked to the relevant annotations and functional assignments. It allows one to easily browse through these data and retrieve information, using various criteria (gene names, location, keywords, etc.). The data contained in Colibri originates from two major sources of information, the reference genomic DNA sequence from the E. coli Genome Project and the feature annotations from the EcoGene data collection., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Colibri (RRID:SCR_007606) Copy
Collection of male germ cell transcriptiome information derived from Serial Analysis of Gene Expression (SAGE). It includes the three key germ cell stages in spermatogenesis, including mouse type A spermatogonia (Spga), pachytene spermatocytes (Spcy), and round spermatids (Sptd). A total of 452,095 SAGE tags are represented in all the libraries and is by far the most comprehensive resource available. Users can choose a global view of germ cell transcriptome data in the UCSC Genome browser. They can also search genes or specify searching criteria based on tag sequence, chromosomal location or tag counts.
Proper citation: GermSAGE (RRID:SCR_007689) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.