Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.animalgenome.org/cgi-bin/QTLdb/index
Database of trait mapping data, i.e. QTL (phenotype / expression, eQTL), candidate gene and association data (GWAS) and copy number variations (CNV) mapped to livestock animal genomes, to facilitate locating and comparing discoveries within and between species. New data and database tools are continually developed to align various trait mapping data to map-based genome features, such as annotated genes. QTLdb is open to house QTL/association date from other animal species where feasible. Most scientific journals require that any original QTL/association data be deposited into public databases before paper may be accepted for publication. User curator accounts are provided for direct data deposit. Users can download QTLdb data from each species or individual chromosome.
Proper citation: Animal QTLdb (RRID:SCR_001748) Copy
http://www.sanbi.ac.za/resources/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. The South African National Bioinformatics Institute delivers biomedical discovery appropriate to both international and African context. Researchers at SANBI perform the highest level of research and provide excellence in education. Research at SANBI has set well recognized milestones in the field of computational biology. The tools and techniques used have not only been developed but also implemented across heterogeneous domains of advanced research. Local and international efforts have driven our discoveries. Until recently, the core of SANBIs research has focused upon gene expression biology. Methods developed and applied at SANBI revolve around a greater understanding of the underlying causes of diseases. SANBI approaches the problem by comparison of genes, genomes and transcriptomes. It uses computational gene expression biology to create novel biological insights and to provide biomarkers for experimental validation. It also performs analysis of human genome variation, transcriptional diversity on both the expression and splicing level and the unravelling of transcriptional regulatory networks. Resources - Hinv, STACKdb, Malaria resources and Trypanosome databases are available for on-line seaching. - SANBI offers WCD, STACKdb, stackPACK and eVOC and the eVOKE viewer as tools that can be downloaded. Sponsors: SANBI receives funding and support from a range of organisations in South Africa and Internationally. Organisations currently supporting SANBI include: South Africa * South African Medical Research Council * South African AIDS Vaccine Initiative * National Bioinformatics Network * National Research Foundation * Claude Leon Foundation * International Business Machines Inc. Europe * European Unions 6th Framework Programme * World Health Organization USA * US National Institutes of Health * Fogarty International Centre * Ludwig Institute for Cancer Research
Proper citation: South African National Bioinformatics Institute: Resources (RRID:SCR_001867) Copy
https://www.hgsc.bcm.edu/content/sea-urchin-genome-project
Provides informationa about Genome of California Purple Sea Urchin, one species (Strongylocentrotus purpuratus) of which has been sequenced and annotated by Sea Urchin Genome Sequencing Consortium led by HGSC. Reports sequence and analysis of genome of sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology.
Proper citation: Sea Urchin Genome Project (RRID:SCR_001735) Copy
http://www-genome.stanford.edu/
This resource hyperlinks to systematic analysis projects, resources, laboratories, and departments at Stanford University.
Proper citation: Stanford Genomic Resourses (RRID:SCR_001874) Copy
Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.
Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy
http://sammeth.net/confluence/display/ASTA/2+-+Download
Tool that extracts and displays alternative splicing (AS) events from a given genomic annotation of exon-intron gene coordinates. By comparing all given transcripts, it detects the variations in their splicing structure and identifies all AS events (like exon skipping, alternate donor, etc) by assigning to each of them an AS code. It provides a visual summary of the AS landscape in the analyzed dataset, the possibility to browse the results on the UCSC website or to download them in GTF or ASTA format. You can use AStalavista for any genome by providing your own annotation set, the identifier of your gene(s) of interest, or analyze the AS landscape of reference annotation datasets like Gencode, RefSeq, Ensembl, FlyBase, etc.
Proper citation: AStalavista (RRID:SCR_001815) Copy
http://athina.biol.uoa.gr/bioinformatics/GENEVITO/
A JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources) and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI) allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of poor annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. GeneViTo has already been applied to visualize the genomes of two microbial organisms: the bacterion Chlamydia trachomatis and the archaeon Methanococcus jannaschii. The application is compatible with Linux or Windows ME-2000-XP operating systems, provided that the appropriate Java Runtime Environment (Java 1.4.1) is already installed in the system.
Proper citation: GeneVito (RRID:SCR_006211) Copy
A visualization hub displaying sequencing data from the Roadmap Epigenomics project. It hosts high volume of tracks from ENCODE and Roadmap Epigenomics projects, supports multiple organisms, visualizes chromatin-interaction data (e.g. Hi-C), performs gene set view, gene plot, and many others. All delivered on the web at high performance.
Proper citation: VizHub (RRID:SCR_006209) Copy
http://www.animalgenome.org/pig/genome/db/
Database facilitating information integration and mining within the pig and across species of all genomics / genetics research results accumulated over the years including pig gene expression, quantitative trait loci (QTL), candidate gene, and whole genome association study (WGAS) results. The key functions developed so far include pig gene pages (a centralized gene search tool), a local copy of Biomart (for customizable genome information queries), genome feature alignment tools (Pig QTLdb and Gbrowse), integrated gene expression information (ANEXDB and ESTdb), a dedicated pig genome and gene set BLAST server, and virtual comparative map database and tools (VCmap). By developing the PGD, it is our aim to collaboratively utilize existing databases and tools via networked functions, such as web services, database API, etc., to maximize the potential of all related databases through the PGD implementation.
Proper citation: Pig Genome Database (RRID:SCR_006367) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A public resource for sharing general proteomics information including data (Tranche repository), tools, and news. Joining or creating a group/project provides tools and standards for collaboration, project management, data annotation, permissions, permanent storage, and publication.
Proper citation: Proteome Commons (RRID:SCR_006234) Copy
http://www.geenivaramu.ee/en/tools/gwama
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software tool for meta analysis of whole genome association data.
Proper citation: GWAMA (RRID:SCR_006624) Copy
Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.
Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy
A comparative platform for green plant genomics. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology / paralogy relationships as well as clade specific genes and gene expansions. As of release v9.1, Phytozome provides access to forty-one sequenced and annotated green plant genomes which have been clustered into gene families at 20 evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Phytozome (RRID:SCR_006507) Copy
http://rice.plantbiology.msu.edu/
Database and resource that provides sequence and annotation data for the rice genome. This website provides genome sequence from the Nipponbare subspecies of rice and annotation of the 12 rice chromosomes. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 75 tracks of annotation. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads. Rice is a model species for the monocotyledonous plants and the cereals which are the greatest source of food for the world''s population. While rice genome sequence is available through multiple sequencing projects, high quality, uniform annotation is required in order for genome sequence data to be fully utilized by researchers. The existence of a common gene set and uniform annotation allows researchers within the rice community to work from a common resource so that their results can be more easily interpreted by other scientists. The objective of this project has always been to provide high quality annotation for the rice genome. They generated, refined and updated gene models for the estimated 40,000-60,000 total rice genes, provided standardized annotation for each model, linked each model to functional annotation including expression data, gene ontologies, and tagged lines. They have provided a resource to extend the annotation of the rice genome to other plant species by providing comparative alignments to other plant species. Analysis/Tools are available including: BLAST, Locus Name Search, Functional Term Search, Protein Domain Search, Anatomy Expression Viewer, Highly Expressed Genes
Proper citation: Rice Genome Annotation (RRID:SCR_006663) Copy
DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.
Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy
We at NRSP-8 bioinformatics coordination program strive to serve the animal genomics research community to better use computer tools and methods, to best utilize available resources, and in working with researchers in the community, to effectively share, combine, manage, manipulate, and analyze information from genomics/genetics studies. This site is designed as an information center to serve the national animal genome research projects of cattle, chicken, pigs, sheep, horse, and aquaculture species. This is home to databases and web sites (being) built for structural, functional and application oriented studies of the animal genomics, to serve the purpose of research, education and related activities in the scientific, industrial and educational communities in the states and world wide. The challenges in bioinformatics support/research for animal genomics may involve * Effective data collection, organization and management * Rapid development of most needed bioinformatics tools and resources * Efficient use of these tools for innovative data analysis Projects: * Animal Trait Ontology (ATO) Project * Virtual Comparative Genomics * The Past, the Current, and the Potentials * Collaborative and Hosted Works
Proper citation: NAGRP Bioinformatics Coordination Program (RRID:SCR_006564) Copy
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
Consortium that puts sequences into a chromosome context and provides the best possible reference assembly for human, mouse, and zebrafish via FTP. Tools to facilitate the curation of genome assemblies based on the sequence overlaps of long, high quality sequences.
Proper citation: Genome Reference Consortium (RRID:SCR_006553) Copy
http://inparanoid.sbc.su.se/cgi-bin/index.cgi
Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.
Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy
Multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. The raw data, search results, and full builds can be downloaded for other uses. All results of sequence searching are processed through PeptideProphet to derive a probability of correct identification for all results in a uniform manner ensuring a high quality database. All peptides are mapped to Ensembl and can be viewed as custom tracks on the Ensembl genome browser. The long term goal of the project is full annotation of eukaryotic genomes through a thorough validation of expressed proteins. The PeptideAtlas provides a method and a framework to accommodate proteome information coming from high-throughput proteomics technologies. The online database administers experimental data in the public domain. You are encouraged to contribute to the database.
Proper citation: PeptideAtlas (RRID:SCR_006783) Copy
http://www.ensemblgenomes.org/
Database portal offering integrated access to genome-scale data from non-vertebrate species of scientific interest, developed using the Ensembl genome annotation and visualization platform. Ensembl Genomes consists of five sub-portals (for bacteria, protists, fungi, plants and invertebrate metazoa) designed to complement the availability of vertebrate genomes in Ensembl. Many of the databases supporting the portal have been built in close collaboration with the scientific community - essential for maintaining the accuracy and usefulness of the resource. A common set of user interfaces (which include a graphical genome browser, FTP, BLAST search, a query optimized data warehouse, programmatic access, and a Perl API) is provided for all domains. Data types incorporated include annotation of (protein and non-protein coding) genes, cross references to external resources, and high throughput experimental data (e.g. data from large scale studies of gene expression and polymorphism visualized in their genomic context). Additionally, extensive comparative analysis has been performed, both within defined clades and across the wider taxonomy, and sequence alignments and gene trees resulting from this can be accessed through the site.
Proper citation: Ensembl Genomes (RRID:SCR_006773) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.