Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 13 showing 241 ~ 260 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_015999

    This resource has 1+ mentions.

https://cell-innovation.nig.ac.jp/maser/Tools/visualization_top_en.html

One stop platform for NGS big data from analysis to visualization. There are about 400 analysis pipelines integrated on Maser. List of all analysis pipelines, including descriptions and approximate execution times, can be found on page for ‘All pipelines’ in the User Guide.. Regist custom genome software registers custom genomes to Genome Explorer (IN: FASTA).

Proper citation: regist custom genome (RRID:SCR_015999) Copy   


http://www.stowers-institute.org/research/core/molecular-biology

Core services include DNA sequencing, site directed mutagenesis, genome engineering (TALENs & CRISPRS), plasmid preparations and distributing clones/vectors from in house collections. Supports real time quantitative PCR through instrument training, troubleshooting and experimental design. Stowers researchers also have access to Illumina Next Generation Sequencing technology. Constructs libraries, performs sequencing and assists with high throughput genome sequencing, RNA-seq and ChIP-seq projects. Utilizes liquid handling and colony manipulation robots to automate many of services. Provides automation expertise and collaborate with researchers on custom automation projects.

Proper citation: Stowers Institute for Medical Research Molecular Biology Core Facility (RRID:SCR_017776) Copy   


https://med.miami.edu/centers-and-institutes/hihg/research-centers/center-for-genome-technology/biorepository-core

Core provides services and houses samples collected over the last 30 years. Biorepository processes, archives, and retrieves biological samples for genomic research. Offers variety of sample processing options including but not limited to automated DNA extraction using Autogen FLEXSTAR+ instrument, automated DNA/RNA extraction using Qiagen QIASymphony, peripheral blood mononuclear cell (PBMC) isolation, serum, plasma and buffy coat isolation, creation of blood cards, DNA/RNA quantitation and qualitation, whole genome amplification, cell-line lymphoblast immortalization and primary fibroblast tissue culture. Offers sample solutions tos uit customized needs.Services also include DNA/RNA Extraction,Sample archiving, retrieval and allocation,Unique and custom labels printing,DNA/RNA quantitation and qualitation,Tissue culture,Whole genome amplification.

Proper citation: University of Miami Hussman Institute for Human Genomics Biorepository Core Facility (RRID:SCR_017816) Copy   


https://med.miami.edu/centers-and-institutes/hihg/research-centers/center-for-genome-technology/sequencing-core

Core Facility offers services utilizing Illumina Novaseq X Plus, Pacific Biosciences Revio, ONT Promethion, and 10x Genomics platforms. The core has extensive knowledge of DNA/RNA library preparation for short-read, long-read and single cell sequencing. Sample preparation is fully automated on Perkin Elmer robotic workstations and tracked via the Clarity LIMS. Services include, but are not limited to, whole genome, exome and custom capture protocols, as well as, bulk RNAseq, small RNAseq, and single cell RNA sequencing.

Proper citation: University of Miami Hussman Institute for Human Genomics Sequencing Core Facility (RRID:SCR_017828) Copy   


http://gif.biotech.iastate.edu/

Provides help with grant review, information on data management plans,suggestion best practices for bionformatics analyses, advise on experimental design for Next Gen Sequencing (NGS) projects.Services include:Genome assembly and annotation,Transcriptome assembly and annotation,SNP/InDel calling,RNA-Seq analysis,ChiP-seq,Introgression mapping,novel gene discovery,Personalized GBrowse instances for data visualization,Access to high performance computing, Custom big data projects.

Proper citation: Iowa State University Genome Informatics Core Facility (RRID:SCR_017790) Copy   


http://ssom.luc.edu/genomics/

Core provides next-generation sequencing capabilities using Illumina MiSeq. Helps with experimental design, quality control analysis, library preparation, and data analysis. MiSeq desktop sequencer allows to access applications such as targeted gene sequencing, metagenomics, small genome sequencing, targeted gene expression, amplicon sequencing, and HLA typing.MiSeq is capable of delivering up to 15 Gb of output with 25 million sequencing reads and 2x300 basepair read lengths.

Proper citation: Loyola University Genomics Core Facility (RRID:SCR_017857) Copy   


http://cqls.oregonstate.edu/

Formerly Center for Genome Research and Biocomputing Core Facility. Functions and facilities include services in genomics, functional genomics, genotyping and imaging.Biocomputing facilities with computing infrastructure, which includes managed cloud and shared resources, data analyses and training are customized to individual needs, including genome assembly and annotation, analysis of RNAseq, GBS, and metagenomics data, and GPU-enabled deep learning analyses.

Proper citation: Oregon State University Center for Quantitative Life Sciences Core Facility (RRID:SCR_018373) Copy   


http://biosciencedbc.jp/

The National Bioscience Database Center (NBDC) intends to integrate all databases for life sciences in Japan, by linking each database with expediency to maximize convenience and make the entire system more user-friendly. We aim to focus our attention on the needs of the users of these databases who have all too often been neglected in the past, rather than the needs of the people tasked with the creation of databases. It is important to note that we will continue to honor the independent integrity of each database that will contribute to our endeavor, as we are fully aware that each database was originally crafted for specific purposes and divergent goals. Services: * Database Catalog - A catalog of life science related databases constructed in Japan that are also available in English. Information such as URL, status of the database site (active vs. inactive), database provider, type of data and subjects of the study are contained for each database record. * Life Science Database Cross Search - A service for simultaneous searching across scattered life-science databases, ranging from molecular data to patents and literature. * Life Science Database Archive - maintains and stores the datasets generated by life scientists in Japan in a long-term and stable state as national public goods. The Archive makes it easier for many people to search datasets by metadata in a unified format, and to access and download the datasets with clear terms of use. * Taxonomy Icon - A collection of icons (illustrations) of biological species that is free to use and distribute. There are more than 200 icons of various species including Bacteria, Fungi, Protista, Plantae and Animalia. * GenLibi (Gene Linker to bibliography) - an integrated database of human, mouse and rat genes that includes automatically integrated gene, protein, polymorphism, pathway, phenotype, ortholog/protein sequence information, and manually curated gene function and gene-related or co-occurred Disease/Phenotype and bibliography information. * Allie - A search service for abbreviations and long forms utilized in life sciences. It provides a solution to the issue that many abbreviations are used in the literature, and polysemous or synonymous abbreviations appear frequently, making it difficult to read and understand scientific papers that are not relevant to the reader's expertise. * inMeXes - A search service for English expressions (multiple words) that appear no less than 10 times in PubMed/MEDLINE titles or abstracts. In addition, you can easily access the sentences where the expression was used or other related information by clicking one of the search results. * HOWDY - (Human Organized Whole genome Database) is a database system for retrieving human genome information from 14 public databases by using official symbols and aliases. The information is daily updated by extracting data automatically from the genetic databases and shown with all data having the identifiers in common and linking to one another. * MDeR (the MetaData Element Repository in life sciences) - a web-based tool designed to let you search, compare and view Data Elements. MDeR is based on the ISO/IEC 11179 Part3 (Registry metamodel and basic attributes). * Human Genome Variation Database - A database for accumulating all kinds of human genome variations detected by various experimental techniques. * MEDALS - A portal site that provides information about databases, analysis tools, and the relevant projects, that were conducted with the financial support from the Ministry of Economy, Trade and Industry of Japan.

Proper citation: NBDC - National Bioscience Database Center (RRID:SCR_000814) Copy   


  • RRID:SCR_001897

    This resource has 10+ mentions.

http://www.fged.org/

Society that develop standards for biological research data quality, annotation and exchange. They facilitate the creation and use of software tools that build on these standards and allow researchers to annotate and share their data easily. They promote scientific discovery that is driven by genome wide and other biological research data integration and meta-analysis. Historically, FGED began with a focus on microarrays and gene expression data. However, the scope of FGED now includes data generated using any technology when applied to genome-scale studies of gene expression, binding, modification and other related applications.

Proper citation: FGED (RRID:SCR_001897) Copy   


  • RRID:SCR_002888

    This resource has 100+ mentions.

http://www.plantcyc.org/

Collaborative project to bring together biochemical pathway databases and research communities focused on plant metabolism. Used to build broad network of plant metabolic pathway databases. Central feature of PMN is PlantCyc, comprehensive plant biochemical pathway database, containing curated information from literature and computational analyses about genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism.

Proper citation: Plant Metabolic Network (RRID:SCR_002888) Copy   


http://www.genetrap.org/

Consortium represents all publicly available gene trap cell lines, which are available on non-collaborative basis for nominal handling fees. Researchers can search and browse IGTC database for cell lines of interest using accession numbers or IDs, keywords, sequence data, tissue expression profiles and biological pathways, can find trapped genes of interest on IGTC website, and order cell lines for generation of mutant mice through blastocyst injection. Consortium members include: BayGenomics (USA), Centre for Modelling Human Disease (Toronto, Canada), Embryonic Stem Cell Database (University of Manitoba, Canada), Exchangeable Gene Trap Clones (Kumamoto University, Japan), German Gene Trap Consortium provider (Germany), Sanger Institute Gene Trap Resource (Cambridge, UK), Soriano Lab Gene Trap Resource (Mount Sinai School of Medicine, New York, USA), Texas Institute for Genomic Medicine - TIGM (USA), TIGEM-IRBM Gene Trap (Naples, Italy).

Proper citation: International Gene Trap Consortium (RRID:SCR_002305) Copy   


  • RRID:SCR_002965

    This resource has 100+ mentions.

http://img.jgi.doe.gov/cgi-bin/m/main.cgi

Resource for analysis and annotation of genome and metagenome datasets in comprehensive comparative context. IMG provides users with tools for analyzing publicly available genome datasets and metagenome datasets.

Proper citation: IMG System (RRID:SCR_002965) Copy   


  • RRID:SCR_003045

    This resource has 500+ mentions.

http://www.jgi.doe.gov/

Institute to advance genomics in support of the DOE missions related to clean energy generation and environmental characterization and cleanup. Supported by the DOE Office of Science, the DOE JGI unites the expertise at Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and the HudsonAlpha Institute for Biotechnology. The facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges.

Proper citation: DOE Joint Genome Institute (RRID:SCR_003045) Copy   


  • RRID:SCR_002628

    This resource has 1+ mentions.

http://lab.rockefeller.edu/casanova/HGC

Data set containing a gene-specific connectome file for each human gene and computer programs for ranking lists of genes within a gene-specific connectome, clustering and plotting the genes by the functional genomic alignment (FGA) approach, and generating gene-specific connectomes. The programs were developed and tested on Mac and Linux systems. The external software required for running these programs is open-source and free of charge. The HGC is the set of all biologically plausible routes, distances, and degrees of separation between all pairs of human genes. A gene-specific connectome contains the set of all available human genes sorted on the basis of their predicted biological proximity to the specific gene of interest. The HGC is a powerful approach for human genotype-phenotype high-throughput studies, for which it can be used to rank any list of genes within a gene-specific connectome for an experimentally validated core gene. Functional genomic alignment (FGA) is equivalent to traditional multiple sequence alignment (MSA), except that it clusters genes in trees on the basis of the functional biological distance between them predicted by HGC, rather than on the basis of molecular evolutionary genetic distance. This method is therefore more suitable for disease and phenotypic studies.

Proper citation: Human Gene Connectome (RRID:SCR_002628) Copy   


http://www.ngfn.de/en/start.html

The program of medical genome research is a large-scale biomedical research project which extends the national genome research net (NGFN) and will be funded by the federal ministry of education and research (BMBF) from 2008-2013. Currently the program includes two fields: * Research ** NGFN-Plus: With the aim on combating diseases that are central to health policy, several hundred researchers are systematically investigating the complex molecular interactions of the human body. They are organized in 26 Integrated Genome Research Networks. * Application ** NGFN-Transfer: The rapid transfer of results from medical genome research into medical and industrial application is the aim of the scientists from research institutes and biomedical enterprises that cooperate in eight Innovation Alliances. AREAS OF DISEASE * Cardiovascular disease * Cancer * Neuronal diseases * Infections and Inflammations * Environmental factors

Proper citation: National Genome Research Network (RRID:SCR_006626) Copy   


http://icebox.lbl.gov:8080/ApolloWebDemo/jbrowse/

WebApollo is an extensible web-based sequence annotation editor for community annotation. No software download is required and the annotations are saved to a centralized database with real-time annotation updating. (The edit server mediates annotation changes made by multiple users.) The Web based client uses JBrowse, is fast and highly interactive. WebApollo accesses many types of genomic data including access to public data from UCSC, Ensembl, and GMOD Chado databases. Source code (BSD License) * Client source code: https://github.com/berkeleybop/jbrowse * Annotation editing engine: http://code.google.com/p/apollo-web * Data model and I/O layer: http://code.google.com/p/gbol * Trellis server code: http://code.google.com/p/genomancer

Proper citation: WebApollo: A Web-Based Sequence Annotation Editor for Community Annotation (RRID:SCR_005321) Copy   


  • RRID:SCR_003009

    This resource has 10+ mentions.

http://www.GeneWeaver.org

Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.

Proper citation: Gene Weaver (RRID:SCR_003009) Copy   


http://ww2.sanbi.ac.za/Dbases.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The STACKdb is knowledgebase generated by processing EST and mRNA sequences obtained from GenBank through a pipeline consisting of masking, clustering, alignment and variation analysis steps. The STACK project aims to generate a comprehensive representation of the sequence of each of the expressed genes in the human genome by extensive processing of gene fragments to make accurate alignments, highlight diversity and provide a carefully joined set of consensus sequences for each gene. The STACK project is comprised of the STACKdb human gene index, a database of virtual human transcripts, as well as stackPACK, the tools used to create the database. STACKdb is organized into 15 tissue-based categories and one disease category. STACK is a tool for detection and visualization of expressed transcript variation in the context of developmental and pathological states. The data system organizes and reconstructs human transcripts from available public data in the context of expression state. The expression state of a transcript can include developmental state, pathological association, site of expression and isoform of expressed transcript. STACK consensus transcripts are reconstructed from clusters that capture and reflect the growing evidence of transcript diversity. The comprehensive capture of transcript variants is achieved by the use of a novel clustering approach that is tolerant of sub-sequence diversity and does not rely on pairwise alignment. This is in contrast with other gene indexing projects. STACK is generated at least four times a year and represents the exhaustive processing of all publicly available human EST data extracted from GenBank. This processed information can be explored through 15 tissue-specific categories, a disease-related category and a whole-body index

Proper citation: Sequence Tag Alignment and Consensus Knowledgebase Database (RRID:SCR_002156) Copy   


http://www.projects.roslin.ac.uk/sheepmap/front.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The project aims to apply genome mapping research to sheep, utilizing previous research in sheep (in other countries) and in other species (in the UK and abroad) to the benefit of the UK sheep industry. The project itself uses existing breeding structures, knowledge of the sheep genome and experimental resources. It has three main aims: i) To use the Suffolk, Texel and Charollais Sire Referencing Schemes to detect and verify quantitative trait loci (QTLs) for growth and carcass composition traits ii) To investigate candidate genes and/or chromosomal regions for associations with production traits. iii) To investigate approaches for optimizing future genotyping strategies within the sire referencing schemes for practical and cost effective application of marker-assisted selection By using commercial breeding populations for the research, immediate application of beneficial results is possible. Potential benefits include increased genetic progress through marker assisted selection which utilizes the genotype information, correction of possible parentage errors (ultimately leading to additional genetic progress) and opportunities for using marker information for product certification. The project will benefit the UK sheep industry by the use of Marker Assisted Selection (MAS) utilizing QTL or gene variants identified in the project. Additional benefits may arise from parentage verification and correction of errors e.g. misallocation of lamb to ewe. In the longer term, opportunities may exist to use markers for quality control, tracing products to their source. The major advantage of the design of this project is that the results are immediately applicable to the breeding schemes within which the QTLs and/or genes are detected. The time lag in the application of the results that is often seen with experimental populations is minimized. The project requires close involvement with the Sire Reference Schemes, in return for their assistance the results have immediate benefit to animals within these groups.

Proper citation: UK Sheep Genome Mapping Project (RRID:SCR_002272) Copy   


  • RRID:SCR_005096

    This resource has 500+ mentions.

http://soybase.org

Professionally curated repository for genetics, genomics and related data resources for soybean that contains the most current genetic, physical and genomic sequence maps integrated with qualitative and quantitative traits. SoyBase includes annotated Williams 82 genomic sequence and associated data mining tools. The genetic and sequence views of the soybean chromosomes and the extensive data on traits and phenotypes are extensively interlinked. This allows entry to the database using almost any kind of available information, such as genetic map symbols, soybean gene names or phenotypic traits. The repository maintains controlled vocabularies for soybean growth, development, and traits that are linked to more general plant ontologies. Contributions to SoyBase or the Breeder''s Toolbox are welcome.

Proper citation: SoyBase (RRID:SCR_005096) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X