Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A database of phylogenetic trees of animal genes. It aims at developing a curated resource that gives reliable information about ortholog and paralog assignments, and evolutionary history of various gene families. TreeFam defines a gene family as a group of genes that evolved after the speciation of single-metazoan animals. It also tries to include outgroup genes like yeast (S. cerevisiae and S. pombe) and plant (A. thaliana) to reveal these distant members.TreeFam is also an ortholog database. Unlike other pairwise alignment based ones, TreeFam infers orthologs by means of gene trees. It fits a gene tree into the universal species tree and finds historical duplications, speciations and losses events. TreeFam uses this information to evaluate tree building, guide manual curation, and infer complex ortholog and paralog relations.The basic elements of TreeFam are gene families that can be divided into two parts: TreeFam-A and TreeFam-B families. TreeFam-B families are automatically created. They might contain errors given complex phylogenies. TreeFam-A families are manually curated from TreeFam-B ones. Family names and node names are assigned at the same time. The ultimate goal of TreeFam is to present a curated resource for all the families. phylogenetic tree, animal, vertebrate, invertebrate, gene, ortholog, paralog, evolutionary history, gene families, single-metazoan animals, outgroup genes like yeast (S. cerevisiae and S. pombe), plant (A. thaliana), historical duplications, speciations, losses, Human, Genome, comparative genomics
Proper citation: Tree families database (RRID:SCR_013401) Copy
http://www.informatics.jax.org/phenotypes.shtml
Enables comparative phenotype analysis, searches for human disease models, and hypothesis generation by providing access to spontaneous, induced, and genetically engineered mutations and their strain-specific phenotypes.
Proper citation: Phenotypes and Mutant Alleles (RRID:SCR_017523) Copy
Manually curated database offering variability and pathogenicity information about mtDNA variants. Human mitochondrial variants data of healthy and diseased subjects.Data and text mining pipeline to annotate human mitochondrial variants with functional and clinical information.
Proper citation: HmtVar (RRID:SCR_017288) Copy
http://www.humphreyslab.com/SingleCell/
Software tool as analyzer for kidney single cell datasets. Allows users to query gene expression from mouse or human kidney and human kidney organoid single cell datasets. For details about datasets visit ReBuilding a Kidney website.
Proper citation: Kidney Interactive Transcriptomics (RRID:SCR_017209) Copy
http://americaninstituteofstress.org/interviews/
From time to time the Editor of Health and Stress interviews leaders in the field of stress management on a variety of topics for inclusion in our publications. Some interviews are listed below. For a complete list of interviews and content, you must be a member of AIS and access the Archives.
Proper citation: American Institute of Stress Interviews (RRID:SCR_005420) Copy
http://publications.nigms.nih.gov/computinglife/
An NIGMS magazine that showcases the exciting ways that scientists are using the power of computers to expand our knowledge of biology and medicine. From text messaging friends to navigating city streets with GPS technology, we''re all living the computing life. But as we''ve upgraded from snail mail and compasses, so too have scientists. Computer advances now let researchers quickly search through DNA sequences to find gene variations that could lead to disease, simulate how flu might spread through your school and design three-dimensional animations of molecules that rival any video game. By teaming computers and biology, scientists can answer new and old questions that could offer insights into the fundamental processes that keep us alive and make us sick. This booklet introduces you to just some of the ways that physicists, biologists and even artists are computing life. Each section focuses on a different research problem, offers examples of current scientific projects and acquaints you with the people conducting the work. You can follow the links for online extras and other opportunities to learn aboutand get involved inthis exciting new interdisciplinary field.
Proper citation: NIGMS Computing Life (RRID:SCR_005850) Copy
http://cancer.case.edu/research/sharedresources/tissue/services/
A combined tissue bank and core facility which provides annotated human tissue samples for research purposes. The facility also offers high quality tissue procurement, tissue microarray, histology, immunohistochemistry, photomicroscopy, and laser capture microdissection services for both human and animal tissues to biomedical investigators conducting non-clinical research studies. The TPHC offers instruction to researchers on how to incorporate human tissue into research activities and how to work within the boundaries of patient confidentiality and other regulatory issues. The purpose of the TPHC is to provide tissue collection and processing services to intramural and extramural researchers studying cancer and other diseases. Normal, diseased, benign and malignant tissues are obtained, and matched normal adjacent tissues and tissues from different organ sites from the same donor can also be provided when available. Tissue samples are prepared according to user-specified protocols and can be fresh in a medium of choice, fixed in formalin, quick frozen in the vapor phase of liquid nitrogen or snap-frozen by plunging the sample into liquid nitrogen. Frozen tissues are held in the vapor phase of the liquid nitrogen. Tissues can also be embedded, cut and mounted on slides, and stained upon request. Tissue Microarray (TMA) services are offered for the design and construction of TMAs meeting specific project needs. Basic demographic data (age, race, gender) and histopathologic data from Surgical Pathology Reports are provided by the TPHC with the tissues.
Proper citation: Case Western Reserve Tissue Procurement and Histology Core Facility (RRID:SCR_005344) Copy
http://www.alz.washington.edu/
A clinical research, neuropathological research and collaborative research database that uses data collected from 29 NIA-funded Alzheimer's Disease Centers (ADCs). The database consists of several datasets, and searches may be done on the entire database or on individual datasets. Any researcher, whether affiliated with an ADC or not, may request a data file for analysis or aggregate data tables. Requested aggregate data tables are produced and returned as soon as the queue allows (usually within 1-3 days depending on the complexity).
Proper citation: National Alzheimer's Coordinating Center (RRID:SCR_007327) Copy
http://www.sanger.ac.uk/Projects/D_rerio/zmp/
Create knockout alleles in protein coding genes in the zebrafish genome, using a combination of whole exome enrichment and Illumina next generation sequencing, with the aim to cover them all. Each allele created is analyzed for morphological differences and published on the ZMP site. Transcript counting is performed on alleles with a morphological phenotype. Alleles generated are archived and can be requested from this site through the Zebrafish International Resource Center (ZIRC). You may register to receive updates on genes of interest, or browse a complete list, or search by Ensembl ID, gene name or human and mouse orthologue.
Proper citation: ZMP (RRID:SCR_006161) Copy
https://www.vet.k-state.edu/research/docs/BRITE-application.pdf
The BRITE Veterinary Student Program provides DVM students interested in research with a subsidized, in-depth mentored research experience. The opportunity can be used to gain research experience, to obtain an MS, or to jump-start a DVM/PhD program. The BRITE veterinary student program is designed to expose DVM students to hypothesis-driven research activities, methodologies involved in design and execution of laboratory experiments and ethical issues pertinent to biomedical research, at a formative stage of their veterinary education. BRITE veterinary students are given a unique opportunity to utilize the rigorous didactic basic science training obtained during the first two years of the professional curriculum in pursuit of a research problem relevant to human and animal health. Sponsors: The program is funded by Kansas State University.
Proper citation: Basic Research Immersion Training Experience Veterinary Student Program (RRID:SCR_008305) Copy
http://www.vetmed.wisc.edu/ms-phd/
The Comparative Biomedical Sciences Graduate Degree program provides exceptional graduate research training in core areas of animal and human health including genomics, immunology, molecular and cellular biology, physiology, infectious disease, neuroscience, pharmacology and toxicology, and oncology. Seventy-five faculty members in a diverse number of UW departments including Bacteriology, Biochemistry, Medical Microbiology and Immunology, Medicine, Oncology, Pathology, Radiology in addition to the 4 departments of the School of Veterinary Medicine are trainers in the program. These internationally recognized professors, as well as the integrative nature of our program, provide outstanding and unique research opportunities for our students. Because the University of Wisconsin is consistently ranked as one of the best 10 graduate institutions in the nation, the strength of our program is not only due to the superb research and teaching of our faculty but also due to the University as a whole. Approximately 55 students, most of whom are Ph.D. candidates, are currently enrolled in the program. Research strategies and academic curricula are tailored to the specific needs of each individual student. Graduates from our program are highly successful in the biotechnology industry and at top-ranked research institutions in the U.S. and abroad. The Comparative Biomedical Sciences Graduate Program offers a diverse number of research opportunities in multiple fields of study. A brief description of some of the major areas of research being performed by faculty affiliated with the Comparative Biomedical Sciences Graduate Program is provided below. Use the pull down menu above or click on the heading to find faculty members doing research in these areas. Sponsors: CBMS is supported by the University of Wisconsin
Proper citation: Comparative Biomedical Sciences Graduate Program (RRID:SCR_008304) Copy
Biomedical technology resource center specializing in novel approaches and tools for neuroimaging. It develops novel strategies to investigate brain structure and function in their full multidimensional complexity. There is a rapidly growing need for brain models comprehensive enough to represent brain structure and function as they change across time in large populations, in different disease states, across imaging modalities, across age and sex, and even across species. International networks of collaborators are provided with a diverse array of tools to create, analyze, visualize, and interact with models of the brain. A major focus of these collaborations is to develop four-dimensional brain models that track and analyze complex patterns of dynamically changing brain structure in development and disease, expanding investigations of brain structure-function relations to four dimensions.
Proper citation: Laboratory of Neuro Imaging (RRID:SCR_001922) Copy
http://www.cs.tau.ac.il/~shlomito/tissue-net/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. Network visualizations in which the expression and predicted flux data are projected over the global human network. These network visualizations are accessible through the supplemental website using the publicly available Cytoscape software (Cline, Smoot et al. 2007). Since many high degree nodes exist in the network, special layouts are required to produce network visualizations that are readily interpretable. To this end we produced network visualizations in which hub nodes are repeated multiple times and hence layouts with a small number of edge crossings can be generated. Contains entries for brain compartments and brain pathways.
Proper citation: Network-based Prediction of Human Tissue-specific Metabolism (RRID:SCR_007392) Copy
http://aws.amazon.com/1000genomes/
A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.
Proper citation: 1000 Genomes Project and AWS (RRID:SCR_008801) Copy
https://confluence.crbs.ucsd.edu/display/NIF/StemCellInfo
Data tables providing an overview of information about stem cells that have been derived from mice and humans. The tables summarize published research that characterizes cells that are capable of developing into cells of multiple germ layers (i.e., multipotent or pluripotent) or that can generate the differentiated cell types of another tissue (i.e., plasticity) such as a bone marrow cell becoming a neuronal cell. The tables do not include information about cells considered progenitor or precursor cells or those that can proliferate without the demonstrated ability to generate cell types of other tissues. The tables list the tissue from which the cells were derived, the types of cells that developed, the conditions under which differentiation occurred, the methods by which the cells were characterized, and the primary references for the information.
Proper citation: National Institutes of Health Stem Cell Tables (RRID:SCR_008359) Copy
http://harvard.eagle-i.net/i/0000012a-2518-fb6c-5617-794280000000
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 27, 2023. Core provides services: RT PCR service, Gene expression profiling service, Proteomics analysis service, Bioinformatics and Systems Biology analyses, Next Generation Sequencing Service, Affymetrix Human and Mouse Gene 2.0 ST Arrays and 2.1 ST Arrayplates. Core proteomics facility for the Dana-Farber/Harvard Cancer Center. Workflows and algorithms for analysis of next-generation sequencing data including RNA-Seq, ChIP-Seq, Epigenetics-Seq and DNA seq, Comprehensive workflow for analysis of Microbiome sequencing data, Integrated systems biology analysis of transcriptome, miRNA, epigenome, metabolomics and proteomics data. Pipelines: MALDI Tissue imaging and targeted quantitative proteomics.
Proper citation: Beth Israel Deaconess Medical Center Genomics Proteomics Bioinformatics and Systems Biology Center (RRID:SCR_009668) Copy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT
Software command line tool for automated tractography. Standardised protocols for automated tractography in human and macaque brain.
Proper citation: XTRACT (RRID:SCR_024933) Copy
https://www.crukscotlandinstitute.ac.uk/advanced-technologies/molecular-technology.html
Core provides Next Generation Sequencing (NGS) services and Single Cell services predominantly focussing on single cell RNAseq. Processes samples for variety of cancer associated projects, in both mouse and human derived materials. Offers full end-to-end service, from initial study design and planning, through sample QC, full library preparation, sequencing and data return. Offers range of standard molecular tests covering, plasmid purifications, Sanger sequencing and mycoplasma screening.
Proper citation: Cancer Research UK Scotland Institute Molecular Technology Service Core Facility (RRID:SCR_027368) Copy
Knowledge graph system developed for managing and organizing rich metadata objects, initially for the Human Brain Project (HBP) and now extended to be a more generic, domain-agnostic solution. It is associated with CSCS (Swiss National Supercomputing Centre) and aims to provide a comprehensive toolset and API for working with knowledge graphs.
Proper citation: MarmotGraph (RRID:SCR_027452) Copy
http://www.hgsc.bcm.tmc.edu/content/honey-bee-genome-project
The HGSC has sequenced the honey bee, Apis mellifera. The version 4.0 assembly was released in March 2006 and published in October 2006. The genome sequence is being upgraded with additional sequence coverage. The honey bee is important in the agricultural community as a producer of honey and as a facilitator of pollination. It is a model organism for studying the following human health issues: immunity, allergic reaction, antibiotic resistance, development, mental health, longevity and diseases of the X chromosome. In addition, biologists are interested in the honey bee's social organization and behavioral traits. This project was proposed to the HGSC by a group of dedicated insect biologists, headed by Gene Robinson. Following a workshop at the HGSC and a honey bee white paper, the HGSC began the project in 2002. A 6-fold coverage WGS, BAC sequence from pooled arrays, and an initial genome assembly (Amel_v1.0) were released beginning in 2003. This has been a challenging project with difficulty in recovering AT-rich regions. The WGS data had lower coverage in AT-rich regions and BAC data from clones showed evidence of internal deletions. Additional reads from AT enriched DNA addressed these underrepresented regions. The current assembly Amel_4.0 was produced with Atlas and includes 2.7 million reads (1.8 Gb) or 7.5x coverage of the (clonable) genome. About 97% of STSs, 98% of ESTs, and 96% of cDNAs are represented in the 231 Mb assembly. About 2,500 reads were also produced from a strain of Africanized honey bee and SNPs were extracted. These were released in dbSNP and the NCBI Trace Archive. Analysis of the genome by a consortium of 20 labs has been completed. This produced a gene list derived from five different methods melded through the GLEAN software. Publications include a main paper in Nature and up to forty companion papers in Genome Research and Insect Molecular Biology. Sponsors: Sequencing of the honey bee is jointly funded by National Human Genome Research Institute (NHGRI) and the Department of Agriculture (USDA). Multiple drones from the same queen (strain DH4) were obtained from Danny Weaver of B. Weaver Apiaries. All libraries were made from DNA isolated from these drones. The honey bee BAC library (CHORI-224) was prepared by Pieter de Jong and Katzutoyo Osoegawa at the Children's Hospital Oakland Research Institute.
Proper citation: Honey Bee Genome Project (RRID:SCR_002890) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.