Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.broadinstitute.org/annotation/genome/magnaporthe_comparative/MultiHome.html
The Magnaporthe comparative genomics database provides accesses to multiple fungal genomes from the Magnaporthaceae family to facilitate the comparative analysis. As part of the Broad Fungal Genome Initiative, the Magnaporthe comparative project includes the finished M. oryzae (formerly M. grisea) genome, as well as the draft assemblies of Gaeumannomyces graminis var. tritici and M. poae. It provides users the tools to BLAST search, browse genome regions (to retrieve DNA, find clones, and graphically view sequence regions), and provides gene indexes and genome statistics. We were funded to attempt 7x sequence coverage comprising paired end reads from plasmids, Fosmids and BACs. Our strategy involves Whole Genome Shotgun (WGS) sequencing, in which sequence from the entire genome is generated and reassembled. Our specific aims are as follows: 1. Generate and assemble sequence reads yielding 7X coverage of the Magnaporthe oryzae genome through whole genome shotgun sequencing. 2. Generate and incorporate BAC and Fosmid end sequences into the genome assembly to provide a paired-end of average every 2 kb. 3. Integrate the genome sequence with existing physical and genetic map information. 4. Perform automated annotation of the sequence assembly. 5. Distribute the sequence assembly and results of our annotation and analysis through a freely accessible, public web server and by deposition of the sequence assembly in GenBank.
Proper citation: Magnaporthe comparative Database (RRID:SCR_003079) Copy
Project to determine the gene expression profiles of normal, precancer, and cancer cells, whose generated resources are available to the cancer community. Interconnected modules provide access to all CGAP data, bioinformatic analysis tools, and biological resources allowing the user to find in silico answers to biological questions in a fraction of the time it once took in the laboratory. * Genes * Tissues * Pathways * RNAi * Chromosomes * SAGE Genie * Tools
Proper citation: Cancer Genome Anatomy Project (RRID:SCR_003072) Copy
http://resexomedb.bioinf-dz.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 28,2025. An online catalog for whole-exome sequencing (WES) results including mutations and gene-disease associations identified by WES. It is browsable and searchable by mutation, gene, study or publication. In addition, it centralizes all publications, software, platforms related to exome / whole genome sequencing.
Proper citation: resExomeDB (RRID:SCR_003224) Copy
http://bibiserv.techfak.uni-bielefeld.de/dialign/
Tool for multiple sequence alignment using various sources of external information that is particularly useful to detect local homologies in sequences with low overall similarity. While standard alignment methods rely on comparing single residues and imposing gap penalties, DIALIGN constructs pairwise and multiple alignments by comparing entire segments of the sequences. No gap penalty is used. This approach can be used for both global and local alignment, but it is particularly successful in situations where sequences share only local homologies. Several versions of DIALIGN are available online at GOBICS, http://dialign.gobics.de/
Proper citation: DIALIGN (RRID:SCR_003041) Copy
http://www.ebi.ac.uk/Tools/pfa/iprscan/
Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.
Proper citation: InterProScan (RRID:SCR_005829) Copy
Ratings or validation data are available for this resource
Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.
Proper citation: UCSC Genome Browser (RRID:SCR_005780) Copy
The Hepatitis C Virus Database (HCVdb) is a cooperative project of several groups with the mission of providing to the scientific community studying the hepatitis C virus a comprehensive battery of informational and analytical tools. The Viral Bioinformatics Resource Center (VBRC), the Immune Epitope Database and Analysis Resource (IEDB), the Broad Institute Microbial Sequencing Center (MSC), and the Los Alamos HCV Sequence Database (HCV-LANL) are combining forces to acquire and annotate data on Hepatitis C virus, and to develop and utilize new tools to facilitate the study of this group of organisms.
Proper citation: Hepatitis C Virus Database (HCVdb) (RRID:SCR_005718) Copy
The Deciphering Developmental Disorders (DDD) study aims to find out if using new genetic technologies can help doctors understand why patients get developmental disorders. To do this we have brought together doctors in the 23 NHS Regional Genetics Services throughout the UK and scientists at the Wellcome Trust Sanger Institute, a charitably funded research institute which played a world-leading role in sequencing (reading) the human genome. The DDD study involves experts in clinical, molecular and statistical genetics, as well as ethics and social science. It has a Scientific Advisory Board consisting of scientists, doctors, a lawyer and patient representative, and has received National ethical approval in the UK. Over the next few years, we are aiming to collect DNA and clinical information from 12,000 undiagnosed children in the UK with developmental disorders and their parents. The results of the DDD study will provide a unique, online catalogue of genetic changes linked to clinical features that will enable clinicians to diagnose developmental disorders. Furthermore, the study will enable the design of more efficient and cheaper diagnostic assays for relevant genetic testing to be offered to all such patients in the UK and so transform clinical practice for children with developmental disorders. Over time, the work will also improve understanding of how genetic changes cause developmental disorders and why the severity of the disease varies in individuals. The Sanger Institute will contribute to the DDD study by performing genetic analysis of DNA samples from patients with developmental disorders, and their parents, recruited into the study through the Regional Genetics Services. Using microarray technology and the latest DNA sequencing methods, research teams will probe genetic information to identify mutations (DNA errors or rearrangements) and establish if these mutations play a role in the developmental disorders observed in patients. The DDD initiative grew out of the groundbreaking DECIPHER database, a global partnership of clinical genetics centres set up in 2004, which allows researchers and clinicians to share clinical and genomic data from patients worldwide. The DDD study aims to transform the power of DECIPHER as a diagnostic tool for use by clinicians. As well as improving patient care, the DDD team will empower researchers in the field by making the data generated securely available to other research teams around the world. By assembling a solid resource of high-quality, high-resolution and consistent genomic data, the leaders of the DDD study hope to extend the reach of DECIPHER across a broader spectrum of disorders than is currently possible.
Proper citation: Deciphering Developmental Disorders (RRID:SCR_006171) Copy
Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.
Proper citation: VectorBase (RRID:SCR_005917) Copy
http://bio-bigdata.hrbmu.edu.cn/diseasemeth/
Human disease methylation database. DiseaseMeth version 2.0 is focused on aberrant methylomes of human diseases. Used for understanding of DNA methylation driven human diseases.
Proper citation: DiseaseMeth (RRID:SCR_005942) Copy
http://www.nematodes.org/nembase4/
NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Proper citation: NEMBASE (RRID:SCR_006070) Copy
One of eight Bioinformatics Resource Centers nationwide providing comprehensive web-based genomics resources including a relational database and web application supporting data storage, annotation, analysis, and information exchange to support scientific research directed at viruses belonging to the Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, Paramyxoviridae, Poxviridae, and Togaviridae families. These centers serve the scientific community and conduct basic and applied research on microorganisms selected from the NIH/NIAID Category A, B, and C priority pathogens that are regarded as possible bioterrorist threats or as emerging or re-emerging infectious diseases. The VBRC provides a variety of analytical and visualization tools to aid in the understanding of the available data, including tools for genome annotation, comparative analysis, whole genome alignments, and phylogenetic analysis. Each data release contains the complete genomic sequences for all viral pathogens and related strains that are available for species in the above-named families. In addition to sequence data, the VBRC provides a curation for each virus species, resulting in a searchable, comprehensive mini-review of gene function relating genotype to biological phenotype, with special emphasis on pathogenesis.
Proper citation: VBRC (RRID:SCR_005971) Copy
FungiDB is a database for functional and evolutionary comparison of fungal genomes. FungiDB is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal "Zygomycete" lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.
Proper citation: FungiDB (RRID:SCR_006013) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 7, 2022. Federation of International Mouse Resources (FIMRe) is a collaborating group of Mouse Repository and Resource Centers worldwide whose collective goal is to archive and provide strains of mice as cryopreserved embryos and gametes, ES cell lines, and live breeding stock to the research community. Goals of the Federation of International Mouse Resources: * Coordinate repositories and resource centers to: ** archive valuable genetically defined mice and ES cell lines being created worldwide ** meet research demand for these genetically defined mice and ES cell lines * Establish consistent, highest quality animal health standards in all resource centers * Provide genetic verification and quality control for genetic background and mutations * Provide resource training to enhance user ability to utilize cryopreserved resources
Proper citation: Federation of International Mouse Resources (RRID:SCR_006137) Copy
http://athina.biol.uoa.gr/bioinformatics/GENEVITO/
A JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources) and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI) allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of poor annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. GeneViTo has already been applied to visualize the genomes of two microbial organisms: the bacterion Chlamydia trachomatis and the archaeon Methanococcus jannaschii. The application is compatible with Linux or Windows ME-2000-XP operating systems, provided that the appropriate Java Runtime Environment (Java 1.4.1) is already installed in the system.
Proper citation: GeneVito (RRID:SCR_006211) Copy
A visualization hub displaying sequencing data from the Roadmap Epigenomics project. It hosts high volume of tracks from ENCODE and Roadmap Epigenomics projects, supports multiple organisms, visualizes chromatin-interaction data (e.g. Hi-C), performs gene set view, gene plot, and many others. All delivered on the web at high performance.
Proper citation: VizHub (RRID:SCR_006209) Copy
http://www.animalgenome.org/pig/genome/db/
Database facilitating information integration and mining within the pig and across species of all genomics / genetics research results accumulated over the years including pig gene expression, quantitative trait loci (QTL), candidate gene, and whole genome association study (WGAS) results. The key functions developed so far include pig gene pages (a centralized gene search tool), a local copy of Biomart (for customizable genome information queries), genome feature alignment tools (Pig QTLdb and Gbrowse), integrated gene expression information (ANEXDB and ESTdb), a dedicated pig genome and gene set BLAST server, and virtual comparative map database and tools (VCmap). By developing the PGD, it is our aim to collaboratively utilize existing databases and tools via networked functions, such as web services, database API, etc., to maximize the potential of all related databases through the PGD implementation.
Proper citation: Pig Genome Database (RRID:SCR_006367) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A public resource for sharing general proteomics information including data (Tranche repository), tools, and news. Joining or creating a group/project provides tools and standards for collaboration, project management, data annotation, permissions, permanent storage, and publication.
Proper citation: Proteome Commons (RRID:SCR_006234) Copy
http://www.geenivaramu.ee/en/tools/gwama
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software tool for meta analysis of whole genome association data.
Proper citation: GWAMA (RRID:SCR_006624) Copy
Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.
Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.