Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 12 showing 221 ~ 240 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006943

    This resource has 100+ mentions.

http://genecodis.cnb.csic.es/

Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneCodis (RRID:SCR_006943) Copy   


  • RRID:SCR_005744

    This resource has 10+ mentions.

http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMerge (RRID:SCR_005744) Copy   


http://coot.embl.de/g2d/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.

Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy   


http://llama.mshri.on.ca/funcassociate/

A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool

Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy   


  • RRID:SCR_005794

http://metagp.ism.ac.jp/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Meta Gene Profiler (MetaGP) is a web application tool for discovering differentially expressed gene sets (meta genes) from the gene set library registered in our database. Once user submits gene expression profiles which are categorized into subtypes of conditioned experiments, or a list of genes with the valid pvalues, MetaGP assigns the integrated p-value to each gene set by combining the statistical evidences of genes that are obtained from gene-level analysis of significance. The current version supports the nine Affymetrix GeneChip arrays for the three organisms (human, mouse and rat). The significances of GO terms are graphically mapped onto the directed acyclic graph (DAG). The navigation systems of GO hierarchy enable us to summarize the significance of interesting sub-graphs on the web browser. Platform: Online tool

Proper citation: MetaGeneProfiler (RRID:SCR_005794) Copy   


  • RRID:SCR_005674

    This resource has 1+ mentions.

http://ccbb.jnu.ac.in/OntoVisT.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 07, 2013. Web based ontological visualization tool for interactive visualization of any ontological hierarchy for a specific node of interest, up to the chosen level of children and/or ancestor. It takes any ontology file in OBO format as input and generates output as DAG hierarchical graph for the chosen query. To enhance the navigation capabilities of complex networks, we have embedded several features such as search criteria, zoom in/out, center focus, nearest neighbor highlights and mouse hover events. The application has been tested on all 72 data sets available in OBO format through OBO foundry. The results for few of them can be accessed through OntoVisT-Gallery.

Proper citation: OntoVisT (RRID:SCR_005674) Copy   


  • RRID:SCR_005795

http://functionalgenomics.de/ontogate/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 13, 2012. OntoGate provides access to GenomeMatrix (GM) entries from Ontology terms and external datasets which have been associated with ontology terms, to find genes from different species in the GM, which have been mapped to the ontology terms. OntoGate includes a BLAST search of amino acid sequences corresponding to annotated genes. Platform: Online tool

Proper citation: OntoGate (RRID:SCR_005795) Copy   


http://wego.genomics.org.cn/cgi-bin/wego/index.pl

Web Gene Ontology Annotation Plot (WEGO) is a simple but useful tool for plotting Gene Ontology (GO) annotation results. Different from other commercial software for chart creating, WEGO is designed to deal with the directed acyclic graph (DAG) structure of GO to facilitate histogram creation of GO annotation results. WEGO has been widely used in many important biological research projects, such as the rice genome project and the silkworm genome project. It has become one of the useful tools for downstream gene annotation analysis, especially when performing comparative genomics tasks. Platform: Online tool

Proper citation: WEGO - Web Gene Ontology Annotation Plot (RRID:SCR_005827) Copy   


  • RRID:SCR_005825

    This resource has 1000+ mentions.

http://revigo.irb.hr/

Web server that summarizes lists of Gene Ontology terms by removing redundant terms and visualizing the remaining ones in scatterplots, interactive graphs, treemaps, or tag clouds. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: REViGO (RRID:SCR_005825) Copy   


  • RRID:SCR_005667

    This resource has 1+ mentions.

http://app.aporc.org/NOA/

Network Ontology Analysis (NOA) (abbreviated to NOA) is a freely available collection of Gene Ontology tools aiming to analyze functions of gene network instead of gene list. Network rewiring facilitates the function changes between conditions even with the same gene list. Therefore, it is necessary to annotate the specific function of networks by considering the fundamental roles of interactions from the viewpoint of systems biology. NOA is such a novel functional enrichment analysis method capable to handle both dynamic and static networks. The application of NOA in biological networks shows that NOA can not only capture changing functions in rewiring networks but also find more relevant and specific functions in traditional static networks. Platform: Online tool

Proper citation: Network Ontology Analysis (RRID:SCR_005667) Copy   


  • RRID:SCR_005788

    This resource has 50+ mentions.

http://snps-and-go.biocomp.unibo.it/snps-and-go/

A server for the prediction of single point protein mutations likely to be involved in the insurgence of diseases in humans.

Proper citation: SNPsandGO (RRID:SCR_005788) Copy   


  • RRID:SCR_005668

    This resource has 10+ mentions.

http://oboedit.org/

OBO-Edit is an open source, platform-independent application written in Java for viewing and editing any OBO format ontologies. OBO-Edit is a graph-based tool; its emphasis on the overall graph structure of an ontology provides a friendly interface for biologists, and makes OBO-Edit excellent for the rapid generation of large ontologies focusing on relationships between relatively simple classes. The UI components are cleanly separated from the data model and data adapters, so these can be reused in other applications. The oboedit foward-chaining reasoner can also be used independently (for example, for traversing ontology graphs). OBO-Edit uses the OBO format flat file. See the GO wiki, http://wiki.geneontology.org/index.php/OBO-Edit:_Getting_the_Source_Code, for instructions on downloading the source code. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: OBO-Edit (RRID:SCR_005668) Copy   


http://bioinformatics.clemson.edu/G-SESAME/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 2,2025. G-SESAME contains a set of tools. They include: tools for measuring the semantic similarity of GO terms; tools for measuring the functional similarity of genes; and tools for clustering genes based on their GO term annotation information. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: G-SESAME - Gene Semantic Similarity Analysis and Measurement Tools (RRID:SCR_005816) Copy   


  • RRID:SCR_005812

http://tomcat.esat.kuleuven.be/txtgate/

TXTGate is a literature index database and is part of an experimental platform to evaluate (combinations of) information extraction and indexing from a variety of biological annotation databases. It is designed towards the summarization and analysis of groups of genes based on text. By means of tailored vocabularies, selected textual fields and MedLine abstracts of LocusLink and SGD are indexed. Subclustering and links to external resources allow for an in-depth analysis of the resulting term profiles. You need to be registered in order to use the TXTGate application. Platform: Online tool

Proper citation: TXTGate (RRID:SCR_005812) Copy   


http://web.cbio.uct.ac.za/ITGOM/

The Integrated Tool for IC-based GO Semantic Similarity Measures (IT-GOM) integrates the currently known GO semantic similarity measures into a single tool. It provides the information content (IC) of GO terms, semantic similarity between GO terms and GO-based protein functional similarity scores. The specificity of GO terms and the similarity of biological content between GO terms or proteins are transformed into numeric values for protein analyses at the functional level. The integration of the different measures enables users to choose the measure best suited to their application and to compare results between different semantic similarity measures. Platform: Online tool

Proper citation: IT-GOM: Integrated Tool for IC-based GO Semantic Similarity Measures (RRID:SCR_005815) Copy   


  • RRID:SCR_005633

    This resource has 10+ mentions.

http://agbase.msstate.edu/cgi-bin/tools/goretriever_select.pl

GORetriever is used to find all of the GO annotations corresponding to a list of user-supplied protein identifiers. GORetriever produces a list of proteins and their annotations and a separate list of entries with no GO annotation. Platform: Online tool

Proper citation: GORetriever (RRID:SCR_005633) Copy   


http://www.utsouthwestern.edu/education/medical-school/departments/pathology/pathdb/classifi.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 10, 2012. Cluster Assignment for Biological Inference (CLASSIFI) is a data-mining tool that can be used to identify significant co-clustering of genes with similar functional properties (e.g. cellular response to DNA damage). Briefly, CLASSIFI uses the Gene Ontology gene annotation scheme to define the functional properties of all genes/probes in a microarray data set, and then applies a cumulative hypergeometric distribution analysis to determine if any statistically significant gene ontology co-clustering has occurred. Platform: Online tool

Proper citation: CLASSIFI - Cluster Assignment for Biological Inference (RRID:SCR_005752) Copy   


  • RRID:SCR_005746

    This resource has 10+ mentions.

http://biit.cs.ut.ee/graphweb/

GraphWeb allows the detection of modules from biological, heterogeneous and multi-species networks, and the interpretation of detected modules using Gene Ontology, cis-regulatory motifs and biological pathways. GraphWeb is a public web server for graph-based analysis of biological networks that: * analyses directed and undirected, weighted and unweighted heterogeneous networks of genes, proteins and microarray probesets for many eukaryotic genomes; * integrates multiple diverse datasets into global networks; * incorporates multispecies data using gene orthology mapping; * filters nodes and edges based on dataset support, edge weight and node annotation; * detects gene modules from networks using a collection of algorithms; * interprets discovered modules using Gene Ontology, pathways, and cis-regulatory motifs. Platform: Online tool

Proper citation: GraphWeb (RRID:SCR_005746) Copy   


  • RRID:SCR_005740

    This resource has 1+ mentions.

http://www.lasige.di.fc.ul.pt/webtools/proteinon/

ProteInOn calculates semantic similarity between GO terms or proteins annotated with GO terms. It also calculates term enrichment of protein sets, by applying a term representativity score, and gives additional information on protein interactions. The query compute protein semantic similarity returns the semantic similarity scores between all proteins entered, in matrix format. The option Measure allows users to choose one of several semantic similarity measures: Resnik, Lin, or Jiang & Conrath's measures with or without the DCA approach, plus the graph-based simUI and simGIC measures. These measures are listed by order of performance as evaluated with protein sequence similarity. The option GO type allows users to choose one of the aspects of GO: molecular function, biological process and cellular component. The option Ignore IEA limits the query to non-electronic annotations, excluding evidence types: IEA, NAS, ND, NR.

Proper citation: ProteInOn (RRID:SCR_005740) Copy   


  • RRID:SCR_005737

    This resource has 50+ mentions.

http://www.animalgenome.org/bioinfo/tools/catego/

CateGOrizer takes batch input of GO term IDs in a list format or unformatted plain text file, allows users to choose one of the available classifications such as GO_slim, GOA, EGAD, MGI_GO_slim, GO-ROOT, or a self-defined classification list, find its parental branch and performs an accumulative classification count, and returns the results in a sorted table of counts, percentages, and a pie chart (if it takes longer than standard time out period, it will email the user with a URL link to the results). This tool is comprised with a set of perl CGI programs coupled with a MySQL DBMS that stores the GO terms DAG data. Platform: Online tool

Proper citation: CateGOrizer (RRID:SCR_005737) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X