Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 11 showing 201 ~ 220 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_005709

    This resource has 1000+ mentions.

http://genemania.org/

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMANIA (RRID:SCR_005709) Copy   


  • RRID:SCR_005824

    This resource has 1+ mentions.

http://www.ebi.ac.uk/webservices/whatizit/info.jsf

A text processing system that allows you to do textmining tasks on text. It is great at identifying molecular biology terms and linking them to publicly available databases. Whatizit is also a Medline abstracts retrieval/search engine. Instead of providing the text by Copy&Paste, you can launch a Medline search. The abstracts that match your search criteria are retrieved and processed by a pipeline of your choice. Whatizit is also available as 1) a webservice and as 2) a streamed servlet. The webservice allows you to enrich content within your website in a similar way as in the wikipedia. The streamed servlet allows you to process large amounts of text.

Proper citation: Whatizit (RRID:SCR_005824) Copy   


  • RRID:SCR_005787

    This resource has 1+ mentions.

http://umbbd.msi.umn.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2014. Database containing information on microbial biocatalytic reactions and biodegradation pathways for primarily xenobiotic, chemical compounds. Its goal is to provide information on microbial enzyme-catalyzed reactions that are important for biotechnology. The reactions covered are studied for basic understanding of nature, biocatalysis leading to specialty chemical manufacture, and biodegradation of environmental pollutants. Individual reactions and metabolic pathways are presented with information on the starting and intermediate chemical compounds, the organisms that transform the compounds, the enzymes, and the genes. The present database has been successfully used to teach enzymology and use of biochemical Internet information resources to advanced undergraduate and graduate students, and is being expanded primarily with the help of such students. In addition to reactions and pathways, this database also contains Biochemical Periodic Tables and a Pathway Prediction System. * Search the UM-BBD for compound, enzyme, microorganism, pathway, or BT rule name; chemical formula; chemical structure; CAS Registry Number; or EC code. * Go to Pathways and Metapathways in the UM-BBD * Lists of 203 pathways; 1400 reactions; 1296 compounds; 916 enzymes; 510 microorganism entries; 245 biotransformation rules; 50 organic functional groups; 76 reactions of naphthalene 1,2-dioxygenase; 109 reactions of toluene dioxygenase; Graphical UM-BBD Overview; and Other Graphics (Metapathway and Pathway Maps and Reaction Mechanisms).

Proper citation: UM-BBD (RRID:SCR_005787) Copy   


  • RRID:SCR_005700

    This resource has 10+ mentions.

http://www.molgen.de

The research of the group concentrates on the molecular biology of Gram-positive bacteria, with Bacillus subtilis and Lactococcus lactis as the main model organisms. A number of important (human) pathogens are also investigated: Bacillus cereus, Streptococcus pneumoniae and Enterococcus faecalis. The nature of the research is both fundamental and application-oriented. Transcript- and protein profiling by high-throughput technologies such as DNA microarrays and proteomics tools are being used. The very large data sets generated are analyzed by employing existing and novel bioinformatics tools. Major lines of research are in the field of functional genomics of these organisms, using systems- and synthetic biology approaches.

Proper citation: MolGen (RRID:SCR_005700) Copy   


  • RRID:SCR_005664

http://ki.se/ki/jsp/polopoly.jsp?d=29354&a=31610&l=en

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. KI Biobank - Gallstone aims at investigating genetics of gallstone disease on Swedish Twins. Types of samples * EDTA whole blood * DNA * Plasma Number of sample donors: 82

Proper citation: KI Biobank (RRID:SCR_005664) Copy   


http://www.dbfordummies.com/go.asp

Db for Dummies! is a small database that imports the Generic GO Slim. It allows data to be viewed in a tree. The Gene Ontology describes gene products in terms of their associated biological processes, cellular components and molecular functions. The Generic Slim Gene Ontology is a subset of the whole Gene Ontology. The slim version gives a broad overview and leaves out specific/fine grained terms. This example stores the slim version of the Gene Ontology (goslim_generic_obo) that can be downloaded from www.geneontology.org/GO.slims.shtml. Platform: Windows compatible

Proper citation: DBD - Slim Gene Ontology (RRID:SCR_005728) Copy   


  • RRID:SCR_005725

    This resource has 1+ mentions.

http://vortex.cs.wayne.edu/projects.htm#Onto-Translate

In the annotation world, the same piece of information can be stored and viewed differently across different databases. For instance, more than one Affymetrix probe ID can refer to the same GenBank sequence (accession number) and more than one nucleotide sequence from GenBank can be grouped in a single UniGene cluster. The result of Onto-Express depends on whether the input list contains Affymetrix probe IDs, GenBank accession numbers or UniGene cluster IDs. The user has to be aware of relations between the different forms of the data in order to interpret correctly the results. Even if the user is aware of the relationships and knows how to convert them, most existing tools allow conversions of individual genes. Onto-Translate is a tool that allows the user to perform easily such translations. Affymetrix probe IDs, etc., translate GO terms into other identifiers like GenBank accession number, Uniprot IDs. User account required. Platform: Online tool

Proper citation: Onto-Translate (RRID:SCR_005725) Copy   


  • RRID:SCR_005687

    This resource has 10+ mentions.

http://www.arabidopsis.org/servlets/Search?type=keyword&action=new_search

TAIR Keyword Browser searches and browses for Gene Ontology, TAIR Anatomy, and TAIR Developmental stage terms, and allows you to view term details and relationships among terms. It includes links to genes, publications, microarray experiments and annotations associated with the term or any children terms. Platform: Online tool

Proper citation: TAIR Keyword Browser (RRID:SCR_005687) Copy   


  • RRID:SCR_005720

http://www.gotaxexplorer.de/

GOTaxExplorer presents a new approach to comparative genomics that integrates functional information and families with the taxonomic classification. It integrates UniProt, Gene Ontology, NCBI Taxonomy, Pfam and SMART in one database. GOTaxExplorer provides four different query types: selection of entity sets, comparison of sets of Pfam families, semantic comparison of sets of GO terms, functional comparison of sets of gene products. This permits to select custom sets of GO terms, families or taxonomic groups. For example, it is possible to compare arbitrarily selected organisms or groups of organisms from the taxonomic tree on the basis of the functionality of their genes. Furthermore, it enables to determine the distribution of specific molecular functions or protein families in the taxonomy. The comparison of sets of GO terms allows to assess the semantic similarity of two different GO terms. The functional comparison of gene products makes it possible to identify functionally equivalent and functionally related gene products from two organisms on the basis of GO annotations and a semantic similarity measure for GO. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOTaxExplorer (RRID:SCR_005720) Copy   


  • RRID:SCR_005722

http://vortex.cs.wayne.edu/projects.htm#Onto-Miner

Onto-Miner (OM) provides a single and convenient interface that allows the user to interrogate our databases regarding annotations of known genes. OM will return all known information about a given list of genes. Advantages of OM include the fact it allows queries with multiple genes and allows for scripting. This is unlike GenBank which uses a single gene navigation process. Scripted search of the Onto-Tools database for gene annotations. User account required. Platform: Online tool

Proper citation: Onto-Miner (RRID:SCR_005722) Copy   


  • RRID:SCR_005681

http://mcbc.usm.edu/gofetcher/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: Quick Search, Advanced Search, and Upload Files for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating gene ontology information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values, and the Extensible Markup Language (XML) format. Platform: Online tool

Proper citation: GOfetcher (RRID:SCR_005681) Copy   


  • RRID:SCR_005682

    This resource has 1+ mentions.

http://llama.mshri.on.ca/gofish/GoFishWelcome.html

Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GoFish (RRID:SCR_005682) Copy   


http://www.hcvdb.org/

The Hepatitis C Virus Database (HCVdb) is a cooperative project of several groups with the mission of providing to the scientific community studying the hepatitis C virus a comprehensive battery of informational and analytical tools. The Viral Bioinformatics Resource Center (VBRC), the Immune Epitope Database and Analysis Resource (IEDB), the Broad Institute Microbial Sequencing Center (MSC), and the Los Alamos HCV Sequence Database (HCV-LANL) are combining forces to acquire and annotate data on Hepatitis C virus, and to develop and utilize new tools to facilitate the study of this group of organisms.

Proper citation: Hepatitis C Virus Database (HCVdb) (RRID:SCR_005718) Copy   


  • RRID:SCR_005735

    This resource has 1+ mentions.

http://www.stanford.edu/~nigam/cgi-bin/dokuwiki/doku.php?id=clench

Cluster Enrichment (CLENCH) allows A. thaliana researchers to perform automated retrieval of GO annotations from TAIR and calculate enrichment of GO terms in gene group with respect to a reference set. Before calculating enrichment, CLENCH allows mapping of the returned annotations to arbitrary coarse levels using GO slim term lists (which can be edited by the user) and a local installation of GO. Platform: Windows compatible, Linux compatible,

Proper citation: CLENCH (RRID:SCR_005735) Copy   


http://www.ddduk.org/

The Deciphering Developmental Disorders (DDD) study aims to find out if using new genetic technologies can help doctors understand why patients get developmental disorders. To do this we have brought together doctors in the 23 NHS Regional Genetics Services throughout the UK and scientists at the Wellcome Trust Sanger Institute, a charitably funded research institute which played a world-leading role in sequencing (reading) the human genome. The DDD study involves experts in clinical, molecular and statistical genetics, as well as ethics and social science. It has a Scientific Advisory Board consisting of scientists, doctors, a lawyer and patient representative, and has received National ethical approval in the UK. Over the next few years, we are aiming to collect DNA and clinical information from 12,000 undiagnosed children in the UK with developmental disorders and their parents. The results of the DDD study will provide a unique, online catalogue of genetic changes linked to clinical features that will enable clinicians to diagnose developmental disorders. Furthermore, the study will enable the design of more efficient and cheaper diagnostic assays for relevant genetic testing to be offered to all such patients in the UK and so transform clinical practice for children with developmental disorders. Over time, the work will also improve understanding of how genetic changes cause developmental disorders and why the severity of the disease varies in individuals. The Sanger Institute will contribute to the DDD study by performing genetic analysis of DNA samples from patients with developmental disorders, and their parents, recruited into the study through the Regional Genetics Services. Using microarray technology and the latest DNA sequencing methods, research teams will probe genetic information to identify mutations (DNA errors or rearrangements) and establish if these mutations play a role in the developmental disorders observed in patients. The DDD initiative grew out of the groundbreaking DECIPHER database, a global partnership of clinical genetics centres set up in 2004, which allows researchers and clinicians to share clinical and genomic data from patients worldwide. The DDD study aims to transform the power of DECIPHER as a diagnostic tool for use by clinicians. As well as improving patient care, the DDD team will empower researchers in the field by making the data generated securely available to other research teams around the world. By assembling a solid resource of high-quality, high-resolution and consistent genomic data, the leaders of the DDD study hope to extend the reach of DECIPHER across a broader spectrum of disorders than is currently possible.

Proper citation: Deciphering Developmental Disorders (RRID:SCR_006171) Copy   


  • RRID:SCR_006121

    This resource has 10+ mentions.

http://stormo.wustl.edu/ScerTF

Catalog of over 1,200 position weight matrices (PWMs) for 196 different yeast transcription factors (TFs). They've curated 11 literature sources, benchmarked the published position-specific scoring matrices against in-vivo TF occupancy data and TF deletion experiments, and combined the most accurate models to produce a single collection of the best performing weight matrices for Saccharomyces cerevisiae. ScerTF is useful for a wide range of problems, such as linking regulatory sites with transcription factors, identifying a transcription factor based on a user-input matrix, finding the genes bound/regulated by a particular TF, and finding regulatory interactions between transcription factors. Enter a TF name to find the recommended matrix for a particular TF, or enter a nucleotide sequence to identify all TFs that could bind a particular region.

Proper citation: ScerTF (RRID:SCR_006121) Copy   


  • RRID:SCR_006122

    This resource has 1+ mentions.

http://www-bionet.sscc.ru/sitex/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2019. Analyzing protein structure projection on exon-intron structure of corresponding gene through years led to several fundamental conclusions about structural and functional organization of the protein. According to these results we decided to map the protein functional sites. So we created the database SitEx that keep the information about this mapping and included the BLAST search and 3D similar structure search using PDB3DScan for the polypeptide encoded by one exon, participating in organizing the functional site. This will help: # to study the positions of the functional sites in exon structure; # to make the complex analysis of the protein function; # to exposure the exons that took part in exon shuffling and came from bacterial genomes; # to study the peculiarities of coding the polypeptide structures. Currently, SitEx contains information about 9994 functional sites presented in 2021 proteins described in proteomes of 17 organisms.

Proper citation: SitEx (RRID:SCR_006122) Copy   


  • RRID:SCR_005942

    This resource has 10+ mentions.

http://bio-bigdata.hrbmu.edu.cn/diseasemeth/

Human disease methylation database. DiseaseMeth version 2.0 is focused on aberrant methylomes of human diseases. Used for understanding of DNA methylation driven human diseases.

Proper citation: DiseaseMeth (RRID:SCR_005942) Copy   


http://distild.jensenlab.org/

The DistiLD database aims to increase the usage of existing genome-wide association studies (GWAS) results by making it easy to query and visualize disease-associated SNPs and genes in their chromosomal context. The database performs three important tasks: # published GWAS are collected from several sources and linked to standardized, international disease codes ICD10 codes) # data from the International HapMap Project are analyzed to define linkage disequilibrium (LD) blocks onto which SNPs and genes are mapped # the web interface makes it easy to query and visualize disease-associated SNPs and genes within LD blocks. Users can query the database by diseases, SNPs or genes. No matter which of the three query modes was used, an intermediate page will be shown listing all the studies that matched the search with a link to the corresponding publication. The user can select either all studies related to a certain disease or one specific study for which to view the related LD blocks. The DistiLD resource integrates information on: * Associations between Single Nucleotide Polymorphisms (SNPs) and diseases from genome-wide association studies (GWAS) * Links between SNPs and genes based on linkage disequilibrium (LD) data from HapMap For convenience, we provide the complete datasets as two (zipped) tab-delimited files. The first file contains GWAS results mapped to LD blocks. The second file contains all SNPs and genes assigned to each LD block.

Proper citation: DistiLD - Diseases and Traits in LD (RRID:SCR_005943) Copy   


  • RRID:SCR_006110

https://compbio.dfci.harvard.edu/predictivenetworks//

A flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these ''known'' interactions together with gene expression data to infer robust gene networks. The regression-based network inference algorithm creates a graph of gene interactions in which cycles may be present (but no self-loops). Based on information-theoretic techniques, a causal gene interaction network is inferred from both prior knowledge (interactions extracted from biomedical literature and structured biological databases) and gene expression data. A prediction model is fitted for each gene, given its parents, enabling assessment of the predictive ability of the network model.

Proper citation: Predictive Networks (RRID:SCR_006110) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X