Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 11 showing 201 ~ 220 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection

http://www.doe-mbi.ucla.edu/

The UCLA-DOE Institute for Genomics and Proteomics carries out research in bioenergy, structural biology, genomics and proteomics, consistent with the research mission of the United States Department of Energy. Major interests of the 12 Principal Investigators and 9 Associate Members include systems approaches to organisms, structural biology, bioinformatics, and bioenergetic systems. The Institute sponsors 5 Core Technology Centers, for X-ray and NMR structural determination, bioinformatics and computation, protein expression and purification, and biochemical instrumentation. Services offered by this Institute: - Databases: * DIP (The Database of Interacting Proteins): The DIPTM database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. * ProLinks Database of Functional Linkages: The Prolinks database is a collection of inference methods used to predict functional linkages between proteins. These methods include the Phylogenetic Profile method which uses the presence and absence of proteins across multiple genomes to detect functional linkages; the Gene Cluster method, which uses genome proximity to predict functional linkage; Rosetta Stone, which uses a gene fusion event in a second organism to infer functional relatedness; and the Gene Neighbor method, which uses both gene proximity and phylogenetic distribution to infer linkage. - Data-to-Structure Servers: * SAVEs Structure Verification Server * Merohedral Twinning Test Server * SER Surface Entropy Reduction Server * VERIFY3D Structure Verification Server * ERRAT Structure Verification Server - Structure-to-Function Servers: * ProKnow Protein Functionator * Hot Patch Functional Site Locator

Proper citation: University of California at Los Angeles - Department of Energy Institute for Genomics and Proteomics (RRID:SCR_001921) Copy   


http://www-genome.stanford.edu/

This resource hyperlinks to systematic analysis projects, resources, laboratories, and departments at Stanford University.

Proper citation: Stanford Genomic Resourses (RRID:SCR_001874) Copy   


http://meme-suite.org/

Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.

Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy   


  • RRID:SCR_001815

    This resource has 50+ mentions.

http://sammeth.net/confluence/display/ASTA/2+-+Download

Tool that extracts and displays alternative splicing (AS) events from a given genomic annotation of exon-intron gene coordinates. By comparing all given transcripts, it detects the variations in their splicing structure and identifies all AS events (like exon skipping, alternate donor, etc) by assigning to each of them an AS code. It provides a visual summary of the AS landscape in the analyzed dataset, the possibility to browse the results on the UCSC website or to download them in GTF or ASTA format. You can use AStalavista for any genome by providing your own annotation set, the identifier of your gene(s) of interest, or analyze the AS landscape of reference annotation datasets like Gencode, RefSeq, Ensembl, FlyBase, etc.

Proper citation: AStalavista (RRID:SCR_001815) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


  • RRID:SCR_008966

    This resource has 50+ mentions.

http://hymenopteragenome.org/beebase/

Gene sequences and genomes of Bombus terrestris, Bombus impatiens, Apis mellifera and three of its pathogens, that are discoverable and analyzed via genome browsers, blast search, and apollo annotation tool. The genomes of two additional species, Apis dorsata and A. florea are currently under analysis and will soon be incorporated.BeeBase is an archive and will not be updated. The most up-to-date bee genome data is now available through the navigation bar on the HGD Home page.

Proper citation: BeeBase (RRID:SCR_008966) Copy   


http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=renal

An integrated resource for information on genes, QTLs and strains associated with a variety of kidney and renal system conditions such as Renal Hypertension, Polycystic Kidney Disease and Renal Insufficiency, as well as Kidney Neoplasms.

Proper citation: Renal Disease Portal (RRID:SCR_009030) Copy   


  • RRID:SCR_010512

    This resource has 1+ mentions.

http://jjwanglab.org/snvrap

The web portal provides comprehensive local database of human genome variants with a user-friendly web page that provides a one-stop annotating and funtonal prediction service which is both convenient and up-to-date. A query can be accepted as either a dbSNP Id or a chromosomal location and our system will instantly provide all the annotation information in an interactive LD panel. The system can also simultaneously prioritize this variant based on additive effect mode by corresponding annotation information and evaluate the variant effect that is then displayed in a prioritization tree. Furthermore, cohort sequencing continuously produces lots of un-annotated variants such as rare variants or de novo variants, and our system can even fit this data by accepting genomic coordinates (hg19) to offer maximal annotations. Main Functions Over 40 up-to-date annotation items for human single nucleotide variations; Functional prediction for different types of variants; Dynamic LD panel for both HapMap and 1000 Genomes Project populations; Prioritization score and tree viewer based on variant functional model.

Proper citation: SNVrap (RRID:SCR_010512) Copy   


http://www.cbil.upenn.edu/cgi-bin/tess/tess

TESS is a web tool for predicting transcription factor binding sites in DNA sequences. It can identify binding sites using site or consensus strings and positional weight matrices from the TRANSFAC, JASPAR, IMD, and our CBIL-GibbsMat database. You can use TESS to search a few of your own sequences or for user-defined CRMs genome-wide near genes throughout genomes of interest. Search for CRMs Genome-wide: TESS now has the ability to search whole genomes for user defined CRMs. Try a search in the AnGEL CRM Searches section of the navigation bar.. You can search for combinations of consensus site sequences and/or PWMs from TRANSFAC or JASPAR. Search DNA for Binding Sites: TESS also lets you search through your own sequence for TFBS. You can include your own site or consensus strings and/or weight matrices in the search. Use the Combined Search under ''Site Searches'' in the menu or use the box for a quick search. TESS assigns a TESS job number to all sequence search jobs. The job results are stored on our server for a period of time specified in the search submit form. During this time you may recall the search results using the form on this page. TESS can also email results to you as a tab-delimited file suitable for loading into a spreadsheet program. Query for Transcription Factor Info: TESS also has data browsing and querying capabilities to help you learn about the factors that were predicted to bind to your sequence. Use the Query TRANSFAC or Query Matrices links above or use the search interface provided from the home page.

Proper citation: TESS: Transcription Element Search System (RRID:SCR_010739) Copy   


  • RRID:SCR_010910

    This resource has 1000+ mentions.

http://bio-bwa.sourceforge.net/

Software for aligning sequencing reads against large reference genome. Consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM. First for sequence reads up to 100bp, and other two for longer sequences ranged from 70bp to 1Mbp.

Proper citation: BWA (RRID:SCR_010910) Copy   


  • RRID:SCR_011886

https://www.genome-cloud.com/user/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 29, 2019. A cloud platform for next-generation sequencing analysis and storage. Services include: * g-Analysis: Automated genome analysis pipelines at your fingertips * g-Cluster: Easy-of-use and cost-effective genome research infrastructure * g-Storage: A simple way to store, share and protect data * g-Insight: Accurate analysis and interpretation of biological meaning of genome data

Proper citation: GenomeCloud (RRID:SCR_011886) Copy   


  • RRID:SCR_011954

    This resource has 1+ mentions.

http://www.jiffynet.org/

Web based instant protein network modeler for newly sequenced species. Web server designed to instantly construct genome scale protein networks using protein sequence data. Provides network visualization, analysis pages and solution for instant network modeling of newly sequenced species.

Proper citation: JiffyNet (RRID:SCR_011954) Copy   


  • RRID:SCR_018731

    This resource has 1+ mentions.

https://github.com/Brazelton-Lab/seq-annot

Software Python package for annotating and counting genomic features in genomes and metagenomes. Software tools to facilitate annotation and comparison of genomes and metagenomes.

Proper citation: seq-annot (RRID:SCR_018731) Copy   


  • RRID:SCR_017647

    This resource has 1000+ mentions.

https://github.com/TransDecoder/TransDecoder

Software tool to identify candidate coding regions within transcript sequences, such as those generated by de novo RNA-Seq transcript assembly using Trinity, or constructed based on RNA-Seq alignments to genome using Tophat and Cufflinks.Starts from FASTA or GFF file. Can scan and retain open reading frames (ORFs) for homology to known proteins by using BlastP or Pfam search and incorporate results into obtained selection. Predictions can then be visualized by using genome browser such as IGV.

Proper citation: TransDecoder (RRID:SCR_017647) Copy   


  • RRID:SCR_017644

    This resource has 50+ mentions.

https://github.com/shendurelab/LACHESIS

Software tool for chromosome scale scaffolding of de novo genome assemblies based on chromatin interactions.Method exploits signal of genomic proximity in Hi-C datasets for ultra long range scaffolding of de novo genome assemblies.

Proper citation: LACHESIS (RRID:SCR_017644) Copy   


  • RRID:SCR_017616

    This resource has 10+ mentions.

https://bitbucket.org/mroachawri/purge_haplotigs/src

Pipeline for reassigning primary contigs that should be labelled as haplotigs. Used for third generation sequencing based assemblies to automate reassignment of allelic contigs, and to assist in manual curation of genome assemblies.

Proper citation: Purge_haplotigs (RRID:SCR_017616) Copy   


https://www.sanger.ac.uk/science/tools/reapr

Software tool to identify errors in genome assemblies without need for reference sequence. Can be used in any stage of assembly pipeline to automatically break incorrect scaffolds and flag other errors in assembly for manual inspection. Reports mis-assemblies and other warnings, and produces new broken assembly based on error calls.

Proper citation: Recognition of Errors in Assemblies using Paired Reads (RRID:SCR_017625) Copy   


  • RRID:SCR_017962

    This resource has 1+ mentions.

https://openwetware.org/wiki/HughesLab:JTK_Cycle

Software R package for Detecting Rhythmic Components in Genome-Scale Data Sets. Non-parametric algorithm to identify rhythmic components in large datasets. Identifies and characterizes cycling variables in large datasets.

Proper citation: JTK_CYCLE (RRID:SCR_017962) Copy   


  • RRID:SCR_017336

    This resource has 100+ mentions.

https://chlorobox.mpimp-golm.mpg.de/geseq.html

Software tool for rapid and accurate annotation of organelle genomes, in particular chloroplast genomes.

Proper citation: GeSeq (RRID:SCR_017336) Copy   


  • RRID:SCR_018198

https://github.com/lufuhao/GeneSyntenyPipeline

Software pipeline was designed to draw gene synteny plot between genomes and obtain 1 to 1 gene pairs from each genome.

Proper citation: GeneSyntenyPipeline (RRID:SCR_018198) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X