Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_011954

    This resource has 1+ mentions.

http://www.jiffynet.org/

Web based instant protein network modeler for newly sequenced species. Web server designed to instantly construct genome scale protein networks using protein sequence data. Provides network visualization, analysis pages and solution for instant network modeling of newly sequenced species.

Proper citation: JiffyNet (RRID:SCR_011954) Copy   


http://www.ebi.ac.uk/gwas/

Catalog of published genome-wide association studies. Genome-wide set of genetic variants in different individuals to see if any variant is associated with trait and disease. Database of genome-wide association study (GWAS) publications including only those attempting to assay single nucleotide polymorphisms (SNPs). Publications are organized from most to least recent date of publication. Studies are identified through weekly PubMed literature searches, daily NIH-distributed compilations of news and media reports, and occasional comparisons with an existing database of GWAS literature (HuGE Navigator). Works with HANCESTRO ancestry representation.

Proper citation: GWAS: Catalog of Published Genome-Wide Association Studies (RRID:SCR_012745) Copy   


  • RRID:SCR_012773

    This resource has 10000+ mentions.

http://www.kegg.jp/

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

Proper citation: KEGG (RRID:SCR_012773) Copy   


http://www.imgt.org/

A high-quality integrated knowledge resource specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrate species, and in the immunoglobulin superfamily (IgSF), MHC superfamily (MhcSF) and related proteins of the immune system (RPI) of vertebrates and invertebrates, serving as the global reference in immunogenetics and immunoinformatics. IMGT provides a common access to sequence, genome and structure Immunogenetics data, based on the concepts of IMGT-ONTOLOGY and on the IMGT Scientific chart rules. IMGT works in close collaboration with EBI (Europe), DDBJ (Japan) and NCBI (USA). IMGT consists of sequence databases, genome database, structure database, and monoclonal antibodies database, Web resources and interactive tools.

Proper citation: IMGT - the international ImMunoGeneTics information system (RRID:SCR_012780) Copy   


  • RRID:SCR_013331

    This resource has 1000+ mentions.

http://PlasmoDB.org

Functional genomic database for malaria parasites. Database for Plasmodium spp. Provides resource for data analysis and visualization in gene-by-gene or genome-wide scale. PlasmoDB 5.5 contains annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution data. Data can be queried by selecting from query grid or drop down menus. Results can be combined with each other on query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.Key community database for malaria researchers, intersecting many types of laboratory and computational data, aggregated by gene.

Proper citation: PlasmoDB (RRID:SCR_013331) Copy   


  • RRID:SCR_008033

    This resource has 100+ mentions.

http://www.gene-regulation.com/pub/databases.html

In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.

Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   


http://www.genomatix.de/

Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.

Proper citation: Genomatix Software: Understanding Gene Regulation (RRID:SCR_008036) Copy   


http://www.animalgenome.org/pigs/nagrp.html

Database and resources on the pig genome.

Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy   


http://csgr.pgml.uga.edu/

The objective of this project is to develop physical maps of the sorghum and rice genomes, based on BAC contigs that are cross-linked to each other and also to genetic maps and BAC islands for other large-genome crops and a library of ca. 50,000 expressed-sequence tags (EST''s) and corresponding cDNA clones, from diverse sorghum organs and developmental states. It also aims to improve understanding of genetic diversity and allelic richness that might be harbored ex situ (in gene banks) or in situ (in nature), and refine techniques for assesing allelic richness and Expedite data acquisition and utilization by a sound parnership between laboratory scientists and computational biologists. Specific goals of developing physical maps of sorghum and rice genomes include: -Enrich cross-links between sorghum and rice by mapping additional rice probes on sorghum. -Apply mapped DNA probes to macroarrays of sorghum, sugarcane, rice, and maize BACs. -Fingerprint 10x BAC libraries of Sorghum bicolor and S. propinquum. Libraries presently 3x and 6x respectively, to be expanded to 10x each. -Use fragment-matching (BAC-RF) method to determine locus-specificity in polyploids. - Contig assembly based on 1-3, plus rice BAC fingerprints generated under a separate Novartis project. -Evaluate methodology for rapid high-throughput assignment of new ESTs to BACs. -Conduct genomic sequencing in a region duplicated in both sorghum and arabidopsis. Selected BACs from sorghum(2), sugarcane, maize, rice, wheat. By improving the understanding of genetic diversity and allelic richness, the goal is to: -Sequence previously mapped sorghum DNA probes. -Discover & characterize 100 single nucleotide polymorphisms (SNPs) from cDNA markers. -Develop colorimetric high-throughput genotyping assays, and utilize to assess genetic diversity in geographically- and phenotypically-diverse sorghums. -Develop colorimetric high-throughput asssays for identifying phytochrome allelic variation, and apply these assays to a core collection representing a large set of genetic resources. -Support informatics group to streamline cataloging of DNA-level information relevant to large genetic resources collections. Lastly, the goals of expediting data acquisition and utilization include: -A new web-based resource for 3D-integration and visualization of structural and functional genomic data will be developed. -New sequence assembly and alignment software SABER (Sequence AssemBly in the presence of ERror), and PRIMAL(Practical RIgorous Multiple ALignment), will be evaluated with reference to existing standards (PHRED, PHRAP). -Specialized image processing and image analysis tools will be developed for acquistion and interpretation of qualitative and quantitative hybridization signals. To deal expeditiously with large volumes of data, parallel processing approaches will be investigated. Sponsors: * National Science Foundation (NSF) * National Sorghum Producers * University of Georgia Research Foundation (UGARF) * Georgia Research Alliance (GRA)

Proper citation: Comparative Saccharinae Genomics Resource (RRID:SCR_008153) Copy   


  • RRID:SCR_008183

    This resource has 1+ mentions.

http://genewindow.nci.nih.gov/

Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible

Proper citation: GeneWindow (RRID:SCR_008183) Copy   


http://www.osc.riken.jp/english/

Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.

Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy   


http://www.biodas.org

The Distributed Annotation System (DAS) defines a communication protocol used to exchange annotations on genomic or protein sequences. It is motivated by the idea that such annotations should not be provided by single centralized databases, but should instead be spread over multiple sites. Data distribution, performed by DAS servers, is separated from visualization, which is done by DAS clients. The advantages of this system are that control over the data is retained by data providers, data is freed from the constraints of specific organisations and the normal issues of release cycles, API updates and data duplication are avoided. DAS is a client-server system in which a single client integrates information from multiple servers. It allows a single machine to gather up sequence annotation information from multiple distant web sites, collate the information, and display it to the user in a single view. Little coordination is needed among the various information providers. DAS is heavily used in the genome bioinformatics community. Over the last years we have also seen growing acceptance in the protein sequence and structure communities. A DAS-enabled website or application can aggregate complex and high-volume data from external providers in an efficient manner. For the biologist, this means the ability to plug in the latest data, possibly including a user''s own data. For the application developer, this means protection from data format changes and the ability to add new data with minimal development cost. Here are some examples of DAS-enabled applications or websites for end users: :- Dalliance Experimental Web/Javascript based Genome Viewer :- IGV Integrative Genome Viewer java based browser for many genomes :- Ensembl uses DAS to pull in genomic, gene and protein annotations. It also provides data via DAS. :- Gbrowse is a generic genome browser, and is both a consumer and provider of DAS. :- IGB is a desktop application for viewing genomic data. :- SPICE is an application for projecting protein annotations onto 3D structures. :- Dasty2 is a web-based viewer for protein annotations :- Jalview is a multiple alignment editor. :- PeppeR is a graphical viewer for 3D electron microscopy data. :- DASMI is an integration portal for protein interaction data. :- DASher is a Java-based viewer for protein annotations. :- EpiC presents structure-function summaries for antibody design. :- STRAP is a STRucture-based sequence Alignment Program. Hundreds of DAS servers are currently running worldwide, including those provided by the European Bioinformatics Institute, Ensembl, the Sanger Institute, UCSC, WormBase, FlyBase, TIGR, and UniProt. For a listing of all available DAS sources please visit the DasRegistry. Sponsors: The initial ideas for DAS were developed in conversations with LaDeana Hillier of the Washington University Genome Sequencing Center.

Proper citation: Distributed Annotation System (RRID:SCR_008427) Copy   


http://flj.hinv.jp/

A human full-length cDNA sequence analysis database focused on mRNA varieties caused by variations of transcription start site (TSS) and splicing. Also available is ATGpr, a program for identifying the translational initiation codons in cDNA sequences. Data are derived from several full-length cDNA studies in Japan. Human gene number was estimated to be 20-25 thousand. However, the number of human mRNA varieties was predicted to be about 100 thousand. The varieties are thought to be caused by variations of TSS and splicing. In their previous human cDNA project, about 30 thousand of FLJ human full-length sequenced cDNAs were deposited to DDBJ/GenBank/EMBL, and they obtained about 1.4 million of 5''-end sequences (5''-EST) of FLJ full-length cDNAs from about 100 kinds of cDNA libraries consist of human tissues and cells constructed by oligo-capping method. The majority of the insert cDNA sizes were over 2 kb and the full-length rate of 5''-end was 90. And our FLJ cDNAs were covered about 80 of human genes. About 22 thousand of finished grades of full-length sequenced cDNAs were obtained in this project. The sequence analysis databases is focused on mRNA variations using human genome and cDNA sequences, FLJ full-length sequenced cDNAs, 5-ESTs of FLJ full-length cDNAs and other cDNA sequences described below. After those sequences were mapped onto the human genome sequences, clustering of the cDNA sequences were done based on the mapping results.

Proper citation: FLJ Human cDNA Database (RRID:SCR_008253) Copy   


  • RRID:SCR_008445

    This resource has 10+ mentions.

http://cgems.cancer.gov

The project began as a pilot study to identify inherited genetic susceptibility to prostate and breast cancer. CGEMS has developed into a robust research program involving genome-wide association studies (GWASs) for a number of cancers to identify common genetic variants that affect a person''s risk of developing cancer. In collaboration with extramural scientists, NCI''s Division of Cancer Epidemiology and Genetics (DCEG) has carried out genome-wide scans for breast, prostate, pancreatic, and lung cancers, while a GWAS of bladder cancer is currently underway. By making the data available to both intramural and extramural research scientists, as well as those in the private sector through rapid posting, NIH can leverage its resources to ensure that the dramatic advances in genomics are incorporated into rigorous population-based studies. Ultimately, findings from these studies may yield new preventive, diagnostic, and therapeutic interventions for cancer. Sponsors: This resource is supported by the U.S. National Institues Of Health.

Proper citation: CGEMS (RRID:SCR_008445) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


  • RRID:SCR_008966

    This resource has 50+ mentions.

http://hymenopteragenome.org/beebase/

Gene sequences and genomes of Bombus terrestris, Bombus impatiens, Apis mellifera and three of its pathogens, that are discoverable and analyzed via genome browsers, blast search, and apollo annotation tool. The genomes of two additional species, Apis dorsata and A. florea are currently under analysis and will soon be incorporated.BeeBase is an archive and will not be updated. The most up-to-date bee genome data is now available through the navigation bar on the HGD Home page.

Proper citation: BeeBase (RRID:SCR_008966) Copy   


http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=renal

An integrated resource for information on genes, QTLs and strains associated with a variety of kidney and renal system conditions such as Renal Hypertension, Polycystic Kidney Disease and Renal Insufficiency, as well as Kidney Neoplasms.

Proper citation: Renal Disease Portal (RRID:SCR_009030) Copy   


  • RRID:SCR_000587

http://www.atgc-montpellier.fr/mpscan/

Web tool for index free mapping of multiple short reads on a genome.

Proper citation: MPscan (RRID:SCR_000587) Copy   


  • RRID:SCR_000747

    This resource has 10+ mentions.

http://genboree.org

A software application and database viewing system for genomic research, more specifically formulti-genome comparison and pattern discovery via genome self-comparison. Data are available for a range of species including Human Chr3, Human Chr12, Sea Urchin, Tribolium, and cow. The Genboree Discovery System is the largest software system developed at the bioinformatics laboratory at Baylor in close collaboration with the Human Genome Sequencing Center. Genboree is a turnkey software system for genomic research. Genboree is hosted on the Internet and, as of early 2007, the number of registered users exceeds 600. While it can be configured to support almost any genome-centric discovery process, a number of configurations already exist for specific applications. Current focus is on enabling studies of genome variation, including array CGH studies, PCR-based resequencing, genome resequencing using comparative sequence assembly, genome remapping using paired-end tags and sequences, genome analysis and annotation, multi-genome comparison and pattern discovery via genome self-comparison. Genboree database and visualization settings, tools, and user roles are configurable to fit the needs of specific discovery processes. Private permanent project-specific databases can be accessed in a controlled way by collaborators via the Internet. Project-specific data is integrated with relevant data from public sources such as genome browsers and genomic databases. Data processing tools are integrated using a plug-in model. Genboree is extensible via flexible data-exchange formats to accommodate project specific tools and processing steps. Our Positional Hashing method, implemented in the Pash program, enables extremely fast and accurate sequence comparison and pattern discovery by employing low-level parallelism. Pash enables fast and sensitive detection of orthologous regions across mammalian genomes, and fast anchoring of hundreds of millions of short sequences produced by next-generation sequencing technologies. We are further developing the Pash program and employing it in the context of various discovery pipelines. Our laboratory participates in the pilot stage of the TCGA (The Cancer Genome Atlas) project. We aim to develop comprehensive, rapid, and economical methods for detecting recurrent chromosomal aberrations in cancer using next-generation sequencing technologies. The methods will allow detection of recurrent chromosomal aberrations in hundreds of small (

Proper citation: Genboree Discovery System (RRID:SCR_000747) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X