Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_003449

    This resource has 1+ mentions.

http://rgd.mcw.edu/tools/ontology/ont_search.cgi

Ontology that defines hierarchical display of different rat strains as derived from parental strains. Ontology Browser allows to retrieve all genes, QTLs, strains and homologs annotated to particular term. Covers all types of biological pathways including altered and disease pathways, and to capture relationships between them within hierarchical structure. Five nodes of ontology include classic metabolic, regulatory, signaling, drug and disease pathways. Ontology allows for standardized annotation of rat. Serves as vehicle to connect between genes and ontology reports, between reports and interactive pathway diagrams, between pathways that directly connect to one another within diagram or between pathways that in some fashion are globally related in pathway suites and suite networks.

Proper citation: Rat Strain Ontology (RRID:SCR_003449) Copy   


  • RRID:SCR_003591

http://bejerano.stanford.edu/phenotree/

Web server to search for genes involved in given phenotypic difference between mammalian species. The mouse-referenced multiple alignment data files used to perform the forward genomics screen is also available. The webserver implements one strategy of a Forward Genomics approach aiming at matching phenotype to genotype. Forward genomics matches a given pattern of phenotypic differences between species to genomic differences using a genome-wide screen. In the implementation, the divergence of the coding region of genes in mammals is measured. Given an ancestral phenotypic trait that is lost in independent mammalian lineages, it is shown that searching for genes that are more diverged in all trait-loss species can discover genes that are involved in the given phenotype.

Proper citation: Phenotree (RRID:SCR_003591) Copy   


  • RRID:SCR_000093

    This resource has 10+ mentions.

http://www.epilepsygenetics.eu/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 16,2023. Group of clinical care and epilepsy research centers who are committed to improving the lives of people with epilepsy through an understanding of the genetics of epilepsy. The consoritum was in an effort to speed discovery to epilepsy genetics by pooling the resources of several research centres., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: EPIGEN (RRID:SCR_000093) Copy   


  • RRID:SCR_000262

    This resource has 50+ mentions.

http://deweylab.biostat.wisc.edu/rsem/

Software package for quantifying gene and isoform abundances from single end or paired end RNA Seq data. Accurate transcript quantification from RNA Seq data with or without reference genome. Used for accurate quantification of gene and isoform expression from RNA-Seq data.

Proper citation: RSEM (RRID:SCR_000262) Copy   


  • RRID:SCR_000271

http://cran.r-project.org/src/contrib/Archive/iFad/

An R software package implementing a bayesian sparse factor model for the joint analysis of paired datasets, the gene expression and drug sensitivity profiles, measured across the same panel of samples, e.g. cell lines.

Proper citation: iFad (RRID:SCR_000271) Copy   


  • RRID:SCR_000173

    This resource has 1+ mentions.

http://discover.nci.nih.gov/gominer/GoCommandWebInterface.jsp

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. A web program that organizes lists of genes of interest (for example, under- and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology and automates the analysis of multiple microarrays then integrates the results across all of them in exportable output files and visualizations. High-Throughput GoMiner is an enhancement of GoMiner and is implemented with both a command line interface and a web interface. The program can also: efficiently perform automated batch processing of an arbitrary number of microarrays; produce a human- or computer-readable report that rank-orders the multiple microarray results according to the number of significant GO categories; integrate the multiple microarray results by providing organized, global clustered image map visualizations of the relationships of significant GO categories; provide a fast form of false discovery rate multiple comparisons calculation; and provide annotations and visualizations for relating transcription factor binding sites to genes and GO categories.

Proper citation: High-Throughput GoMiner (RRID:SCR_000173) Copy   


  • RRID:SCR_000346

http://icbi.at/software/gpviz/gpviz.shtml

A versatile Java-based software used for dynamic gene-centered visualization of genomic regions and/or variants.

Proper citation: GPViz (RRID:SCR_000346) Copy   


  • RRID:SCR_000383

    This resource has 1+ mentions.

http://teddy.epi.usf.edu/

International consortium of six centers assembled to participate in the development and implementation of studies to identify infectious agents, dietary factors, or other environmental agents, including psychosocial factors, that trigger type 1 diabetes in genetically susceptible people. The coordinating centers recruit and enroll subjects, obtaining informed consent from parents prior to or shortly after birth, genetic and other types of samples from neonates and parents, and prospectively following selected neonates throughout childhood or until development of islet autoimmunity or T1DM. The study tracks child diet, illnesses, allergies and other life experiences. A blood sample is taken from children every 3 months for 4 years. After 4 years, children will be seen every 6 months until the age of 15 years. Children are tested for 3 different autoantibodies. The study will compare the life experiences and blood and stool tests of the children who get autoantibodies and diabetes with some of those children who do not get autoantibodies or diabetes. In this way the study hopes to find the triggers of T1DM in children with higher risk genes.

Proper citation: TEDDY (RRID:SCR_000383) Copy   


  • RRID:SCR_000515

    This resource has 10+ mentions.

http://www.arb-home.de/

Software environment for maintaining databases of molecular sequences and additional information, and for analyzing the sequence data, with emphasis on phylogeny reconstruction. Programs have primarily been developed for ribosomal ribonucleic acid (rRNA) sequences and, therefore, contain special tools for alignment and analysis of these structures. However, other molecular sequence data can also be handled. Protein gene sequences and predicted protein primary structures as well as protein secondary structures can be stored in the same database. ARB package is designed for graphical user interface. Program control and data display are available in a hierarchical set of windows and subwindows. Majority of operations can be controlled using mouse for moving pointer and the left mouse button for initiating and performing operations.

Proper citation: ARB project (RRID:SCR_000515) Copy   


  • RRID:SCR_000472

    This resource has 10+ mentions.

http://fulxie.0fees.us/?type=reference&ckattempt=1

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1,2023. Web-based tool for evaluating and screening reference genes from extensive experimental datasets. It integrates major computational programs (geNorm, Normfinder, BestKeeper, and the comparative delta-Ct method) to compare and rank the tested candidate reference genes. Based on the rankings from each program, it assigns an appropriate weight to an individual gene and calculated the geometric mean of their weights for the overall final ranking., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: RefFinder (RRID:SCR_000472) Copy   


  • RRID:SCR_000706

    This resource has 1+ mentions.

http://www.flybrain.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Interactive database of Drosophila melanogaster nervous system. Used by drosophila neuroscience community and by other researchers studying arthropod brain structure.

Proper citation: FlyBrain (RRID:SCR_000706) Copy   


  • RRID:SCR_000692

http://www.psb.ugent.be/esb/PiNGO/

A Java-based tool to easily find unknown genes in a network that are significantly associated with user-defined target Gene Ontology (GO) categories. PiNGO is implemented as a plugin for Cytoscape, a popular open source software platform for visualizing and integrating molecular interaction networks. PiNGO predicts the categorization of a gene based on the annotations of its neighbors, using the enrichment statistics of its sister tool BiNGO. Networks can either be selected from the Cytoscape interface or uploaded from file. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: PiNGO (RRID:SCR_000692) Copy   


http://franklin.imgen.bcm.tmc.edu/

The mission of the Baylor College of Medicine - Shaw Laboratory is to apply methods of statistics and bioinformatics to the analysis of large scale genomic data. Our vision is data integration to reveal the underlying connections between genes and processes in order to cure disease and improve healthcare.

Proper citation: Baylor College of Medicine - Shaw Laboratory (RRID:SCR_000604) Copy   


http://gdm.fmrp.usp.br/

Laboratory portal of the University of Sao Paulo Molecular Genetics and Bioinformatic Laboratory.

Proper citation: USP Molecular Genetics and Bioinformatics Laboratory (RRID:SCR_000605) Copy   


http://harvard.eagle-i.net/i/0000012e-58c7-d44f-55da-381e80000000

Core to provide gene expression data analysis service. Activities range from the provision of services to fully collaborative grant funded investigations.

Proper citation: Harvard Partners HealthCare Center for Personalized Genetic Medicine Bioinformatics Core Facility (RRID:SCR_000882) Copy   


  • RRID:SCR_000807

http://www.yandell-lab.org/software/index.html

Sequenced genomes contain a treasure trove of information about how genes function and evolve. Getting at this information, however, is challenging and requires novel approaches that combine computer science and experimental molecular biology. My lab works at the intersection of both domains, and research in our group can be summarized as follows: generate hypotheses concerning gene function and evolution by computational means, and then test these hypotheses at the bench. This is easier said than done, as serious barriers still exist to using sequenced genomes and their annotations as starting points for experimental work. Some of these barriers lie in the computational domain, others in the experimental. Though challenging, overcoming these barriers offers exciting training opportunities in both computer science and molecular genetics, especially for those seeking a future at the intersection of both fields. Ongoing projects in the lab are centered on genome annotation and comparative genomics; exploring the relationships between sequence variation and human disease; and high-throughput biological image analysis. Current software tools available: VAAST (the Variant Annotation, Analysis & Search Tool) is a probabilistic search tool for identifying damaged genes and their disease-causing variants in personal genome sequences. VAAST builds upon existing amino acid substitution (AAS) and aggregative approaches to variant prioritization, combining elements of both into a single unified likelihood-framework that allows users to identify damaged genes and deleterious variants with greater accuracy, and in an easy-to-use fashion. VAAST can score both coding and non-coding variants, evaluating the cumulative impact of both types of variants simultaneously. VAAST can identify rare variants causing rare genetic diseases, and it can also use both rare and common variants to identify genes responsible for common diseases. VAAST thus has a much greater scope of use than any existing methodology. MAKER 2 (updated 01-16-2012) MAKER is a portable and easily configurable genome annotation pipeline. It's purpose is to allow smaller eukaryotic and prokaryotic genomeprojects to independently annotate their genomes and to create genome databases. MAKER identifies repeats, aligns ESTs and proteins to a genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence-based quality values. MAKER is also easily trainable: outputs of preliminary runs can be used to automatically retrain its gene prediction algorithm, producing higher quality gene-models on seusequent runs. MAKER's inputs are minimal and its ouputs can be directly loaded into a GMOD database. They can also be viewed in the Apollo genome browser; this feature of MAKER provides an easy means to annotate, view and edit individual contigs and BACs without the overhead of a database. MAKER should prove especially useful for emerging model organism projects with minimal bioinformatics expertise and computer resources. RepeatRunner RepeatRunner is a CGL-based program that integrates RepeatMasker with BLASTX to provide a comprehensive means of identifying repetitive elements. Because RepeatMasker identifies repeats by means of similarity to a nucleotide library of known repeats, it often fails to identify highly divergent repeats and divergent portions of repeats, especially near repeat edges. To remedy this problem, RepeatRunner uses BLASTX to search a database of repeat encoded proteins (reverse transcriptases, gag, env, etc...). Because protein homologies can be detected across larger phylogenetic distances than nucleotide similarities, this BLASTX search allows RepeatRunner to identify divergent protein coding portions of retro-elements and retro-viruses not detected by RepeatMasker. RepeatRunner merges its BLASTX and RepeatMasker results to produce a single, comprehensive XML-based output. It also masks the input sequence appropriately. In practice RepeatRunner has been shown to greatly improve the efficacy of repeat identifcation. RepeatRunner can also be used in conjunction with PILER-DF - a program designed to identify novel repeats - and RepeatMasker to produce a comprehensive system for repeat identification, characterization, and masking in the newly sequenced genomes. CGL CGL is a software library designed to facilitate the use of genome annotations as substrates for computation and experimentation; we call it CGL, an acronym for Comparitive Genomics Library, and pronounce it Seagull. The purpose of CGL is to provide an informatics infrastructure for a laboratory, department, or research institute engaged in the large-scale analysis of genomes and their annotations.

Proper citation: Yandell Lab Portal (RRID:SCR_000807) Copy   


  • RRID:SCR_000792

    This resource has 1+ mentions.

http://www.rostlab.org/cms/

A lab organization which has bases in Munich, Germany and at Columbia University and focuses its research on protein structure and function using sequence and evolutionary information. They utilize machine learning and statistical methods to analyze genetic material and its gene products. Research goals of the lab involve using protein and DNA sequences along with evolutionary information to predict aspects of the proteins relevant to the advance of biomedical research.

Proper citation: ROSTLAB (RRID:SCR_000792) Copy   


http://fantom.gsc.riken.jp/

International collaborative research project and database of annotated mammalian genome. Used to improve estimates of total number of genes and their alternative transcript isoforms in both human and mouse. Consortium to assign functional annotations to full length cDNAs that were collected during Mouse Encyclopedia Project at RIKEN.

Proper citation: Functional Annotation of the Mammalian Genome (RRID:SCR_000788) Copy   


http://www.genome.jp/kegg/expression/

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy   


  • RRID:SCR_001204

http://ccb.jhu.edu/software/sim4cc/

Software tool as cross species spliced alignment program.Heuristic sequence alignment tool for comparing cDNA sequence with genomic sequence containing homolog of gene in another species.

Proper citation: sim4cc (RRID:SCR_001204) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X