Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 284 results
Snippet view Table view Download 284 Result(s)
Click the to add this resource to a Collection

http://www.pediatricmri.nih.gov/

Data sets of clinical / behavioral and image data are available for download by qualified researchers from a seven year, multi-site, longitudinal study using magnetic resonance technologies to study brain maturation in healthy, typically-developing infants, children, and adolescents and to correlate brain development with cognitive and behavioral development. The information obtained in this study is expected to provide essential data for understanding the course of normal brain development as a basis for understanding atypical brain development associated with a variety of developmental, neurological, and neuropsychiatric disorders affecting children and adults. This study enrolled over 500 children, ranging from infancy to young adulthood. The goal was to study each participant at least three times over the course of the project at one of six Pediatric Centers across the United States. Brain MR and clinical/behavioral data have been compiled and analyzed at a Data Coordinating Center and Clinical Coordinating Center. Additionally, MR spectroscopy and DTI data are being analyzed. The study was organized around two objectives corresponding to two age ranges at the time of enrollment, each with its own protocols. * Objective 1 enrolled children ages 4 years, 6 months through 18 years (total N = 433). This sample was recruited across the six Pediatric Study Centers using community based sampling to reflect the demographics of the United States in terms of income, race, and ethnicity. The subjects were studied with both imaging and clinical/behavioral measures at two year intervals for three time points. * Objective 2 enrolled newborns, infants, toddlers, and preschoolers from birth through 4 years, 5 months, who were studied three or more times at two Pediatric Study Centers at intervals ranging from three months for the youngest subjects to one year as the children approach the Objective 1 age range. Both imaging and clinical/behavioral measures were collected at each time point. Participant recruitment used community based sampling that included hospital venues (e.g., maternity wards and nurseries, satellite physician offices, and well-child clinics), community organizations (e.g., day-care centers, schools, and churches), and siblings of children participating in other research at the Pediatric Study Centers. At timepoint 1, of those enrolled, 114 children had T1 scans that passed quality control checks. Staged data release plan: The first data release included structural MR images and clinical/behavioral data from the first assessments, Visit 1, for Objective 1. A second data release included structural MRI and clinical/behavioral data from the second visit for Objective 1. A third data release included structural MRI data for both Objective 1 and 2 and all time points, as well as preliminary spectroscopy data. A fourth data release added cortical thickness, gyrification and cortical surface data. Yet to be released are longitudinally registered anatomic MRI data and diffusion tensor data. A collaborative effort among the participating centers and NIH resulted in age-appropriate MR protocols and clinical/behavioral batteries of instruments. A summary of this protocol is available as a Protocol release document. Details of the project, such as study design, rationale, recruitment, instrument battery, MRI acquisition details, and quality controls can be found in the study protocol. Also available are the MRI procedure manual and Clinical/Behavioral procedure manuals for Objective 1 and Objective 2.

Proper citation: NIH MRI Study of Normal Brain Development (RRID:SCR_003394) Copy   


  • RRID:SCR_003577

    This resource has 50+ mentions.

http://synapses.clm.utexas.edu

A portal into the 3D ultrastructure of the brain providing: Anatomy of astrocytes, axons, dendrites, hippocampus, organelles, synapses; procedures of 3D reconstruction and tissue preparation; as well as an atlas of ultrastructural neurocytology (by Josef Spacek), online aligned images, and reconstructed dendrites. Synapse Web hosts an ultrastructural atlas containing more than 500 electron micrographs (added to regularly) that identify unique ultrastructural and cellular components throughout the brain. Additionally, Synapse Web has raw images, reconstructions, and quantitative data along with tutorial instructions and numerous tools for investigating the functional structure of objects that have been serial thin sectioned for electron microscopy.

Proper citation: Synapse Web (RRID:SCR_003577) Copy   


  • RRID:SCR_004434

    This resource has 100+ mentions.

https://nda.nih.gov/

The National Institute of Mental Health Data Archive (NDA) makes available human subjects data collected from hundreds of research projects across many scientific domains. Research data repository for data sharing and collaboration among investigators. Used to accelerate scientific discovery through data sharing across all of mental health and other research communities, data harmonization and reporting of research results. Infrastructure created by National Database for Autism Research (NDAR), Research Domain Criteria Database (RDoCdb), National Database for Clinical Trials related to Mental Illness (NDCT), and NIH Pediatric MRI Repository (PedsMRI).

Proper citation: NIMH Data Archive (RRID:SCR_004434) Copy   


  • RRID:SCR_004817

    This resource has 100+ mentions.

http://trackvis.org/

TrackVis is software tool that can visualize and analyze fiber track data from diffusion MR imaging (DTI/DSI/HARDI/Q-Ball) tractography. It does NOT perform actual fiber tracking. Diffusion Toolkit is a set of tools that reconstruct diffusion imaging data and generate fiber track data for TrackVis to visualize. Because these two sets of tools were developed and maintained separately and each has distinguished funtionalities, they decided to distribute them as two separate programs for the ease of maintenance and upgrade. You do need both of them to perform complete diffusion data processing and analysis. Features of TrackVis include: * Cross-platform. Works on Windows, Mac OS X and Linux with native look and feel. * A variety of track filters (track selecting methods) allowing users to explore and locate specific bundles with ease. * Multiple rendering modes with customizable scalar-driven color codes. * Real-time parameter adjustment and 3D render. * Open format of the track data file allowing users to integrate customized scalar data into the track file and visualize and analyze it. Save and restore scenes in XML style scene file. * Statistical scalar analysis of tracks and ROIs. * Synchronized real-time multiple dataset analysis and display allowing time-point and/or subject comparison. Synchronized analysis and display on same dataset can also be performed in real-time remotely over the network. * Upfront in-line parameter adjustment in real-time. No tedious pop-up dialogs. TrackVis works with Track File created by Diffusion Toolkit. Diffusion Toolkit processes raw DICOM, Nifti format and ANALYZE images. TrackVis and Diffusion Toolkit are cross-platform software. They can run on Windows XP, Mac OS X as well as Linux.

Proper citation: TrackVis (RRID:SCR_004817) Copy   


  • RRID:SCR_005387

    This resource has 1+ mentions.

http://pubbrain.org/

A literature search and visualization tool that allows end users to enter any PubMed query and see that query rendered as a heatmap illustrating which regions of interest are most commonly mentioned within the search results. To use PubBrain, simply enter any valid PubMed search in the search box.

Proper citation: PubBrain (RRID:SCR_005387) Copy   


http://www.nimh.nih.gov/educational-resources/neuroscience-and-psychiatry/neuroscience-and-psychiatry-module-1-translating-neural-circuits-into-novel-therapeutics.shtml

This is the first in a series of modules on neuroscience and psychiatry. This module explores research on cognitive deficits, a core feature of schizophrenia and the single best predictor of functional outcomes in this disorder for which we currently have no treatments. This module is an example of how translational neuroscience can provide clues for the development of promising novel therapeutics.

Proper citation: Neuroscience and Psychiatry Module 1: Translating Neural Circuits into Novel Therapeutics (RRID:SCR_005609) Copy   


  • RRID:SCR_005588

    This resource has 1+ mentions.

http://infocenter.nimh.nih.gov/il/public_il/

Database of photographs and illustrations of general biomedical research and research tools, mental health specific research, and treatment related images that are available, copyright free, to the public at no cost. Many images are available in low, medium, and high resolutions. Formats include jpg, gif, and png. NIMH images may not be used to state or imply the endorsement by NIMH or by an NIMH employee of a commercial product, service, or activity, or use in any other manner that might mislead. No fee is charged for using the images. However, credit must be given to the National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services unless otherwise instructed to give credit to the photographer or other source., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: NIMH Image Library (RRID:SCR_005588) Copy   


  • RRID:SCR_013997

    This resource has 10+ mentions.

http://wings-workflows.org

A software application which assists scientists with designing computational experiments. WINGS is a semantic workflow system which incorporates semantic constraints about datasets and workflow components into its workflow representations. The workflow system has an open modular design and can be easily integrated with other existing workflow systems and execution frameworks to extend them with semantic reasoning capabilities. WINGS also allows users to express high-level descriptions of their analysis goals, and assists them by automatically and systematically generating possible workflows that are consistent with that request. In cases where privacy or off-line use are important, WINGS can submit workflows in a scripted format for execution in the local host. It uses Pegasus or OODT as the execution engine for large-scale distributed workflow execution.

Proper citation: WINGS (RRID:SCR_013997) Copy   


http://www.nitrc.org/projects/pediatric_mri

A database which contains longitudinal structural MRIs, spectroscopy, DTI and correlated clinical/behavioral data from approximately 500 healthy, normally developing children, ages newborn to young adult.

Proper citation: NIH Pediatric MRI Data Repository (RRID:SCR_014149) Copy   


  • RRID:SCR_014074

    This resource has 1+ mentions.

http://www.hedtags.org/

Strategy guide for HED Annotation. Framework for systematically describing laboratory and real world events.HED tags are comma separated path strings. Organized in forest of groups with roots Event, Item, Sensory presentation, Attribute, Action, Participant, Experiment context, and Paradigm. Used for preparing brain imaging data for automated analysis and meta analysis. Applied to brain imaging EEG, MEG, fNIRS, multimodal mobile brain or body imaging, ECG, EMG, GSR, or behavioral data. Part of Brain Imaging Data Structure standard for brain imaging.

Proper citation: HED Tags (RRID:SCR_014074) Copy   


  • RRID:SCR_007830

    This resource has 1+ mentions.

http://senselab.med.yale.edu/ordb/

Database of vertebrate olfactory receptors genes and proteins. It supports sequencing and analysis of these receptors by providing a comprehensive archive with search tools for this expanding family. The database also incorporates a broad range of chemosensory genes and proteins, including the taste papilla receptors (TPRs), vomeronasal organ receptors (VNRs), insect olfaction receptors (IORs), Caenorhabditis elegans chemosensory receptors (CeCRs), and fungal pheromone receptors (FPRs). ORDB currently houses chemosensory receptors for more than 50 organisms. ORDB contains public and private sections which provide tools for investigators to analyze the functions of these very large gene families of G protein-coupled receptors. It also provides links to a local cluster of databases of related information in SenseLab, and to other relevant databases worldwide. The database aims to house all of the known olfactory receptor and chemoreceptor sequences in both nucleotide and amino acid form and serves four main purposes: * It is a repository of olfactory receptor sequences. * It provides tools for sequence analysis. * It supports similarity searches (screens) which reduces duplicate work. * It provides links to other types of receptor information, e.g. 3D models. The database is accessible to two classes of users: * General public www users have full access to all the public sequences, models and resources in the database. * Source laboratories are the laboratories that clone olfactory receptors and submit sequences in the private or public database. They can search any sequence they deposited to the database against any private or public sequence in the database. This user level is suited for laboratories that are actively cloning olfactory receptors.

Proper citation: Olfactory Receptor DataBase (RRID:SCR_007830) Copy   


http://brainspan.org/

Atlas of developing human brain for studying transcriptional mechanisms involved in human brain development. Consists of RNA sequencing and exon microarray data profiling up to sixteen cortical and subcortical structures across full course of human brain development, high resolution neuroanatomical transcriptional profiles of about 300 distinct structures spanning entire brain for four midgestional prenatal specimens, in situ hybridization image data covering selected genes and brain regions in developing and adult human brain, reference atlas in full color with high resolution anatomic reference atlases of prenatal (two stages) and adult human brain along with supporting histology, magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI) data.

Proper citation: Allen Human Brain Atlas: BrainSpan (Atlas of the Developing Brain) (RRID:SCR_008083) Copy   


http://www.bri.ucla.edu/research/resources

Brain bank resources which include postmortem human frozen brain tissue and matched cerebrospinal fluid (CSF) and blood available for scientists to search for etiopathogeneses of human disease. The National Neurological Research Specimen Bank and the Multiple Sclerosis Human Neurospecimen Bank maintains a collection of quick frozen and formalin fixed postmortem human brain tissue and frozen cerebrospinal fluid from patients with neurological diseases, including Alzheimer's Disease, amyotrophic lateral sclerosis, depressive disorder/suicide, and epilepsy, among others. Diagnoses are documented by clinical medical records and gross/microscopic neuropathology. The Neuropathology Laboratory at the UCLA Medical Center maintains a bank of frozen, formalin and paraformaldehyde-fixed and paraffin-embedded postmortem human brain tissues and frozen cerebrospinal fluid (CSF) from patients who die with Alzheimer's disease and other dementing and degenerative illnesses, as well as control materials removed in a similar fashion from patients who are neurologically normal.

Proper citation: Brain Research Institute Biobank Resources (RRID:SCR_008756) Copy   


  • RRID:SCR_008750

    This resource has 50+ mentions.

https://www.humanconnectome.org/software/connectome-workbench

Software brain visualization, analysis and discovery tool for fMRI and dMRI brain imaging data, including functional and structural connectivity data generated by the Human Connectome Project. Used to map brain imaging data. Allows for visualization of outputs from HCP pipelines from single subject, or average data from group of subjects and register that data onto standard brain atlas.

Proper citation: Connectome Workbench (RRID:SCR_008750) Copy   


http://humanconnectome.org/

Consortium to comprehensively map long-distance brain connections and their variability. It is acquiring data and developing analysis pipelines for several modalities of neuroimaging data plus behavioral and genetic data from healthy adults.

Proper citation: Human Connectome Coordination Facility (RRID:SCR_008749) Copy   


http://www.nimh.nih.gov/educational-resources/neuroscience-and-psychiatry/neuroscience-and-psychiatry-module-2-fear-safety-anxiety-and-anxiety-disorders.shtml

This is the second in a series of modules on neuroscience and psychiatry. This module describes neuroscience research on animal models of fear that informed human studies of fear/safety, anxiety and anxiety disorders. This model helps shed light on the symptoms of PTSD and lead to the development of a novel treatment that has been successful in research studies for several anxiety disorders.

Proper citation: Neuroscience and Psychiatry Module 2: Fear/Safety Anxiety and Anxiety Disorders (RRID:SCR_008843) Copy   


http://www.nimh.nih.gov/funding/clinical-trials-for-researchers/practical/tordia/treatment-of-ssri-resistant-depression-in-adolescents-tordia.shtml

A multi-site, clinical research study examining treatment options for teens whose depression has not improved after one adequate trial of a selective serotonin reuptake inhibitor (SSRI), a type of antidepressant. The purpose of the study is to determine how best to treat adolescents with depression that is resistant to the first SSRI antidepressant they have tried. Participants receive one of three other antidepressant medications, either alone or in combination with cognitive behavioral therapy. The TORDIA study aims to develop useful clinical guidelines for the care and management of adolescent depression. Adolescents ages 12 to 18, currently taking a prescribed selective serotonin reuptake inhibitor (SSRI) and still experiencing depression, participate in a 12-week randomized treatment study that includes one of four conditions: (1) switching to an alternative SSRI, (2) switching to a different non-SSRI antidepressant, (3) switching to an alternative SSRI and receiving cognitive behavioral therapy (CBT), or (4) switching to a different non-SSRI antidepressant and receiving CBT. This is a double-blind study, which means that neither the participant nor the clinical staff will know which of the three possible medications has been assigned. Participants who respond to the assigned treatment will receive 12 additional weeks of the same treatment. Those who do not appear to be getting better will be offered 12 weeks of an alternative, individualized treatment plan based on each participant''s particular needs. All participants will receive follow-up psychiatric evaluations for 12 months after the 12-week continuation phase of the study, regardless of treatment adherence. For more information visit, http://www.clinicaltrials.gov/ct2/show/NCT00018902?term=clinical+trial+AND+treatment+of+ssri-resistant+AND+depression+AND+TORDIA+AND+study&rank=1

Proper citation: Treatment of SSRI-resistant Depression in Adolescents (TORDIA) (RRID:SCR_008831) Copy   


http://trans.nih.gov/bmap/index.htm

The Brain Molecular Anatomy Project is a trans-NIH project aimed at understanding gene expression and function in the nervous system. BMAP has two major scientific goals: # Gene discovery: to catalog of all the genes expressed in the nervous system, under both normal and abnormal conditions. # Gene expression analysis: to monitor gene expression patterns in the nervous system as a function of cell type, anatomical location, developmental stage, and physiological state, and thus gain insight into gene function. In pursuit of these goals, BMAP has launched several initiatives to provide resources and funding opportunities for the scientific community. These include several Requests for Applications and Requests for Proposals, descriptions of which can be found in this Web site. BMAP is also in the process of establishing physical and electronic resources for the community, including repositories of cDNA clones for nervous system genes, and databases of gene expression information for the nervous system. Most of the BMAP initiatives so far have focused on the mouse as a model species because of the ease of experimental and genetic manipulation of this organism, and because many models of human disease are available in the mouse. However, research in humans, other mammalian species, non-mammalian vertebrates, and invertebrates is also being funded through BMAP. For the convenience of interested investigators, we have established this Web site as a central information resource, focusing on major NIH-sponsored funding opportunities, initiatives, genomic resources available to the research community, courses and scientific meetings related to BMAP initiatives, and selected reports and publications. When appropriate, we will also post initiatives not directly sponsored by BMAP, but which are deemed relevant to its goals. Posting decisions are made by the Trans-NIH BMAP Committee

Proper citation: BMAP - Brain Molecular Anatomy Project (RRID:SCR_008852) Copy   


  • RRID:SCR_002244

    This resource has 100+ mentions.

http://www.nimh.nih.gov/research-priorities/rdoc/index.shtml

NIMH Strategic Plan developing, for research purposes, new ways of classifying psychopathology based on dimensions of observable behavior and neurobiological measures. In brief, the effort is to define basic dimensions of functioning (such as fear circuitry or working memory) to be studied across multiple units of analysis, from genes to neural circuits to behaviors, cutting across disorders as traditionally defined. The intent is to translate rapid progress in basic neurobiological and behavioral research to an improved integrative understanding of psychopathology and the development of new and/or optimally matched treatments for mental disorders. The various domains of functioning, and their constituent elements, are being defined by an ongoing series of consensus workshops; input from the research community and other interested stakeholders is encouraged.

Proper citation: RDoC (RRID:SCR_002244) Copy   


  • RRID:SCR_002235

    This resource has 1+ mentions.

http://cogpo.org

Ontology used to describe the experimental conditions within cognitive and behavioral experiments, primarily in humans for application and use in the functional neuroimaging community. CogPO has been developed through the integration of the Functional Imaging Biomedical Informatics Research Network (FBIRN) Human Imaging Database (HID) and the BrainMap Database. The design of CogPO concentrates on what can be observed directly: categorization of each paradigm in terms of (1) the stimulus presented to the subjects, (2) the requested instructions, and (3) the returned response.

Proper citation: Cognitive Paradigm Ontology (RRID:SCR_002235) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X