Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Community registry of software tools and data resources for life sciences. Tools and data services registry as community effort to document bioinformatics resources. Registry of software and databases, facilitating researchers from across spectrum of biological and biomedical science. When adding tools to registry, information including URL, contact information, resource function, field its relevant in, and its primary publication are required. Development is supported by ELIXIR - the European Infrastructure for Biological Information.
Proper citation: bio.tools (RRID:SCR_014695) Copy
http://phenom.ccbr.utoronto.ca/index.jsp
Database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae, it allows storing, retrieving, visualizing and data mining the quantitative single-cell measurements extracted from micrographs of the temperature-sensitive (ts) mutant cells. PhenoM allows users to rapidly search and retrieve raw images and their quantified morphological data for genes of interest. The database also provides several data-mining tools, including a PhenoBlast module for phenotypic comparison between mutant strains and a Gene Ontology module for functional enrichment analysis of gene sets showing similar morphological alterations. About one-fifth of the genes in the budding yeast are essential for haploid viability and cannot be functionally assessed using standard genetic approaches such as gene deletion. To facilitate genetic analysis of essential genes, we and others have assembled collections of yeast strains expressing temperature-sensitive (ts) alleles of essential genes. To explore the phenotypes caused by essential gene mutation we used a panel of genetically engineered fluorescent markers to explore the morphology of cells in the ts strain collection using high-throughput microscopy. The database contains quantitative measurements of 1,909,914 cells and 78,194 morphological images for 775 temperature-sensitive mutants spanning 491 different essential genes in permissive temperature (26* C) and restrictive temperature (32* C). The morphological images were generated by high-content screening (HCS) technology.
Proper citation: PhenoM - Phenomics of yeast Mutants (RRID:SCR_006970) Copy
Functional Analysis of Transcriptional Networks (FunNet) is designed as an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytical model implemented in this tool involves two abstraction layers: transcriptional (i.e. gene expression profiles) and functional (i.e. biological themes indicating the roles of the analyzed transcripts). A functional analysis technique, which relies on Gene Ontology and KEGG annotations, is applied to extract a list of relevant biological themes from microarray gene expression data. Afterwards multiple-instance representations are built to relate relevant biological themes to their annotated transcripts. An original non-linear dynamical model is used to quantify the contextual proximity of relevant genomic themes based on their patterns of propagation in the gene co-expression network (i.e. capturing the similarity of the expression profiles of the transcriptional instances of annotating themes). In the end an unsupervised multiple-instance spectral clustering procedure is used to explore the modular architecture of the co-expression network by grouping together biological themes demonstrating a significant relationship in the co-expression network. Functional and transcriptional representations of the co-expression network are provided, together with detailed information on the contextual centrality of related transcripts and genomic themes. FunNet is provided both as a web-based tool and as a standalone R package. The standalone R implementation can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix) and can be downloaded from the FunNet website, or from the worldwide mirrors of CRAN. Both implementations of the FunNet tool are provided freely under the GNU General Public License 2.0. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FunNet - Transcriptional Networks Analysis (RRID:SCR_006968) Copy
http://goblet.molgen.mpg.de/cgi-bin/goblet2008/goblet.cgi
Tool that performs annotation based on GO and pathway terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. GOblet expects query sequences to be in FASTA-Format (with header-lines). Protein and nucleotide sequences are accepted. Total size of all sequences submitted per request should not be larger than 50kb currently. For security reasons: Larger post's will be rejected. Due to limited capacities the queries may be processed in batches depending on the server load. The output of the BLAST job is filtered automatically and the relevant hits are displayed. In addition, the respective GO-terms are shown together with the complete GO-hierarchy of parent terms., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GOblet (RRID:SCR_006998) Copy
http://bioinfo.cau.edu.cn/agriGO/
A web-based tool and database for the gene ontology analysis. Its focus is on agricultural species and is user-friendly. The agriGO is designed to provide deep support to agricultural community in the realm of ontology analysis. Compared to other available GO analysis tools, unique advantages and features of agriGO are: # The agriGO especially focuses on agricultural species. It supports 45 species and 292 datatypes currently. And agriGO is designed as an user-friendly web server. # New tools including PAGE (Parametric Analysis of Gene set Enrichment), BLAST4ID (Transfer IDs by BLAST) and SEACOMPARE (Cross comparison of SEA) were developed. The arrival of these tools provides users with possibilities for data mining and systematic result exploration and will allow better data analysis and interpretation. # The exploratory capability and result visualization are enhanced. Results are provided in different formats: HTML tables, tabulated text files, hierarchical tree graphs, and flash bar graphs. # In agriGO, PAGE and SEACOMPARE can be used to carry out cross-comparisons of results derived from different data sets, which is very important when studying multiple groups of experiments, such as in time-course research. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: agriGO (RRID:SCR_006989) Copy
http://yetfasco.ccbr.utoronto.ca/
Collection of all available transcription factor (TF) specificities for the yeast Saccharomyces cerevisiae in Position Frequency Matrix (PFM) or Position Weight Matrix (PWM) formats. The specificities are evaluated for quality using several metrics. With this website, you can scan sequences with the motifs to find where potential binding sites lie, inspect precomputed genome-wide binding sites, find which TFs have similar motifs to one you have found, and download the collection of motifs. Submissions are welcome.
Proper citation: YeTFaSCo (RRID:SCR_006893) Copy
http://www.softpedia.com/get/Science-CAD/DynGO.shtml
DynGO is a client-server application that provides several advanced functionalities in addition to the standard browsing capability. DynGO allows users to conduct batch retrieval of GO annotations for a list of genes and gene products, and semantic retrieval of genes and gene products sharing similar GO annotations (which requires more disk and memory to handle the semantic retrieval). The result are shown in an association tree organized according to GO hierarchies and supported with many dynamic display options such as sorting tree nodes or changing orientation of the tree. For GO curators and frequent GO users, DynGO provides fast and convenient access to GO annotation data. DynGO is generally applicable to any data set where the records are annotated with GO terms, as illustrated by two examples. Requirements: Java Platform: Windows compatible, Linux compatible, Unix compatible
Proper citation: DynGO (RRID:SCR_007009) Copy
A collaboration involving developers of science-based ontologies who are establishing a set of principles for ontology development with the goal of creating a suite of orthogonal interoperable reference ontologies in the biomedical domain. In addition to a listing of OBO ontologies, this site provides a statement of the OBO Foundry principles, discussion fora, technical infrastructure, and other services to facilitate ontology development. Feedback is welcome and participation encouraged.
Proper citation: OBO (RRID:SCR_007083) Copy
http://organelledb.lsi.umich.edu/
Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.
Proper citation: Organelle DB (RRID:SCR_007837) Copy
http://bioinformatics.ubc.ca/ermineJ/
Data analysis software for gene sets in expression microarray data or other genome-wide data that results in rankings of genes. A typical goal is to determine whether particular biological pathways are doing something interesting in the data. The software is designed to be used by biologists with little or no informatics background. A command-line interface is available for users who wish to script the use of ermineJ. Major features include: * Implementation of multiple methods for gene set analysis: ** Over-representation analysis ** A resampling-based method that uses gene scores ** A rank-based method that uses gene scores ** A resampling-based method that uses correlation between gene expression profiles (a type of cluster-enrichment analysis). * Gene sets receive statistical scores (p-values), and multiple test correction is supported. * Support of the Gene Ontology terminology; users can choose which aspects to analyze. * User files use simple text formats. * Users can modify gene sets or create new ones. * The results can be visualized within the software. * It is simple to compare multiple analyses of the same data set with different settings. * User-definable hyperlinks are provided to external sites to allow more efficient browsing of the results. * For programmers, there is a command line interface as well as a simple application programming interface that can be used to plug ermineJ functionality into your own code Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: ErmineJ (RRID:SCR_006450) Copy
A public database that enhances understanding of the effects of environmental chemicals on human health. Integrated GO data and a GO browser add functionality to CTD by allowing users to understand biological functions, processes and cellular locations that are the targets of chemical exposures. CTD includes curated data describing cross-species chemical–gene/protein interactions, chemical–disease and gene–disease associations to illuminate molecular mechanisms underlying variable susceptibility and environmentally influenced diseases. These data will also provide insights into complex chemical–gene and protein interaction networks.
Proper citation: Comparative Toxicogenomics Database (CTD) (RRID:SCR_006530) Copy
Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.
Proper citation: FlyBase (RRID:SCR_006549) Copy
Service providing functional analysis of proteins by classifying them into families and predicting domains and important sites. They combine protein signatures from a number of member databases into a single searchable resource, capitalizing on their individual strengths to produce a powerful integrated database and diagnostic tool. This integrated database of predictive protein signatures is used for the classification and automatic annotation of proteins and genomes. InterPro classifies sequences at superfamily, family and subfamily levels, predicting the occurrence of functional domains, repeats and important sites. InterPro adds in-depth annotation, including GO terms, to the protein signatures. You can access the data programmatically, via Web Services. The member databases use a number of approaches: # ProDom: provider of sequence-clusters built from UniProtKB using PSI-BLAST. # PROSITE patterns: provider of simple regular expressions. # PROSITE and HAMAP profiles: provide sequence matrices. # PRINTS provider of fingerprints, which are groups of aligned, un-weighted Position Specific Sequence Matrices (PSSMs). # PANTHER, PIRSF, Pfam, SMART, TIGRFAMs, Gene3D and SUPERFAMILY: are providers of hidden Markov models (HMMs). Your contributions are welcome. You are encouraged to use the ''''Add your annotation'''' button on InterPro entry pages to suggest updated or improved annotation for individual InterPro entries.
Proper citation: InterPro (RRID:SCR_006695) Copy
Debian is Linux distribution composed of free and open source software, developed by community supported Debian Project, which was established by Ian Murdock on August 16, 1993.Debian comes with over 59000 packages (precompiled software that is bundled up in nice format for easy installation on your machine), package manager (APT), and other utilities that make it possible to manage thousands of packages on thousands of computers as easily as installing single application.
Proper citation: Debian (RRID:SCR_006638) Copy
Web based gene set analysis toolkit designed for functional genomic, proteomic, and large-scale genetic studies from which large number of gene lists (e.g. differentially expressed gene sets, co-expressed gene sets etc) are continuously generated. WebGestalt incorporates information from different public resources and provides a way for biologists to make sense out of gene lists. This version of WebGestalt supports eight organisms, including human, mouse, rat, worm, fly, yeast, dog, and zebrafish.
Proper citation: WebGestalt: WEB-based GEne SeT AnaLysis Toolkit (RRID:SCR_006786) Copy
http://biit.cs.ut.ee/gprofiler/
Web server for functional enrichment analysis and conversions of gene lists. Web based tool for functional profiling of gene lists from large scale experiments. Has web interface with powerful visualization. Used for analyzing data from any organism.
Proper citation: g:Profiler (RRID:SCR_006809) Copy
http://agbase.msstate.edu/cgi-bin/tools/goretriever_select.pl
GORetriever is used to find all of the GO annotations corresponding to a list of user-supplied protein identifiers. GORetriever produces a list of proteins and their annotations and a separate list of entries with no GO annotation. Platform: Online tool
Proper citation: GORetriever (RRID:SCR_005633) Copy
http://llama.mshri.on.ca/funcassociate/
A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool
Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Meta Gene Profiler (MetaGP) is a web application tool for discovering differentially expressed gene sets (meta genes) from the gene set library registered in our database. Once user submits gene expression profiles which are categorized into subtypes of conditioned experiments, or a list of genes with the valid pvalues, MetaGP assigns the integrated p-value to each gene set by combining the statistical evidences of genes that are obtained from gene-level analysis of significance. The current version supports the nine Affymetrix GeneChip arrays for the three organisms (human, mouse and rat). The significances of GO terms are graphically mapped onto the directed acyclic graph (DAG). The navigation systems of GO hierarchy enable us to summarize the significance of interesting sub-graphs on the web browser. Platform: Online tool
Proper citation: MetaGeneProfiler (RRID:SCR_005794) Copy
http://ccbb.jnu.ac.in/OntoVisT.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 07, 2013. Web based ontological visualization tool for interactive visualization of any ontological hierarchy for a specific node of interest, up to the chosen level of children and/or ancestor. It takes any ontology file in OBO format as input and generates output as DAG hierarchical graph for the chosen query. To enhance the navigation capabilities of complex networks, we have embedded several features such as search criteria, zoom in/out, center focus, nearest neighbor highlights and mouse hover events. The application has been tested on all 72 data sets available in OBO format through OBO foundry. The results for few of them can be accessed through OntoVisT-Gallery.
Proper citation: OntoVisT (RRID:SCR_005674) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within RRID that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.