Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 10 showing 181 ~ 200 out of 315 results
Snippet view Table view Download 315 Result(s)
Click the to add this resource to a Collection

http://www.jcvi.org/charprotdb/index.cgi/home

The Characterized Protein Database, CharProtDB, is designed and being developed as a resource of expertly curated, experimentally characterized proteins described in published literature. For each protein record in CharProtDB, storage of several data types is supported. It includes functional annotation (several instances of protein names and gene symbols) taxonomic classification, literature links, specific Gene Ontology (GO) terms and GO evidence codes, EC (Enzyme Commisssion) and TC (Transport Classification) numbers and protein sequence. Additionally, each protein record is associated with cross links to all public accessions in major protein databases as ��synonymous accessions��. Each of the above data types can be linked to as many literature references as possible. Every CharProtDB entry requires minimum data types to be furnished. They are protein name, GO terms and supporting reference(s) associated to GO evidence codes. Annotating using the GO system is of importance for several reasons; the GO system captures defined concepts (the GO terms) with unique ids, which can be attached to specific genes and the three controlled vocabularies of the GO allow for the capture of much more annotation information than is traditionally captured in protein common names, including, for example, not just the function of the protein, but its location as well. GO evidence codes implemented in CharProtDB directly correlate with the GO consortium definitions of experimental codes. CharProtDB tools link characterization data from multiple input streams through synonymous accessions or direct sequence identity. CharProtDB can represent multiple characterizations of the same protein, with proper attribution and links to database sources. Users can use a variety of search terms including protein name, gene symbol, EC number, organism name, accessions or any text to search the database. Following the search, a display page lists all the proteins that match the search term. Click on the protein name to view more detailed annotated information for each protein. Additionally, each protein record can be annotated.

Proper citation: CharProtDB: Characterized Protein Database (RRID:SCR_005872) Copy   


  • RRID:SCR_006796

    This resource has 1000+ mentions.

http://www.broadinstitute.org/mammals/haploreg/haploreg.php

HaploReg is a tool for exploring annotations of the noncoding genome at variants on haplotype blocks, such as candidate regulatory SNPs at disease-associated loci. Using linkage disequilibrium (LD) information from the 1000 Genomes Project, linked SNPs and small indels can be visualized along with their predicted chromatin state in nine cell types, conservation across mammals, and their effect on regulatory motifs. HaploReg is designed for researchers developing mechanistic hypotheses of the impact of non-coding variants on clinical phenotypes and normal variation.

Proper citation: HaploReg (RRID:SCR_006796) Copy   


http://pepr.cnmcresearch.org/

An experiment in web-database access to large multi-dimensional data sets using a standardized experimental platform to determine if the larger scientific community can be given simple, intuitive, and user-friendly web-based access to large microarray data sets. All data in PEPR is also available via NCBI GEO. The structure and goals of PEPR differ from other mRNA expression profiling databases in a number of important ways. * The experimental platform in PEPR is standardized, and is an Affymetrix - only database. All microarrays available in the PEPR web database should ascribe to quality control and standard operating procedures. A recent publication has described the QC/SOP criteria utilized in PEPR profiles ( The Tumor Analysis Best Practices Working Group 2004 ). * PEPR permits gene-based queries of large Affymetrix array data sets without any specialized software. For example, a number of large time series projects are available within PEPR, containing 40-60 microarrays, yet these can be simply queried via a dynamic web interface with no prior knowledge of microarray data analysis. * Projects in PEPR originate from scientists world-wide, but all data has been generated by the Research Center for Genetic Medicine, Children''''s National Medical Center, Washington DC. Future developments of PEPR will allow remote entry of Affymetrix data ascribing to the same QC/SOP protocols. They have previously described an initial implementation of PEPR, and a dynamic web-queried time series graphical interface ( Chen et al. 2004 ). A publication showing the utility of PEPR for pharmacodynamic data has recently been published ( Almon et al. 2003 ).

Proper citation: Public Expression Profiling Resource (RRID:SCR_007274) Copy   


http://www.oreganno.org/oregano/

Open source, open access database and literature curation system for community based annotation of experimentally identified DNA regulatory regions, transcription factor binding sites and regulatory variants. Automatically cross referenced against PubMED, Entrez Gene, EnsEMBL, dbSNP, eVOC: Cell type ontology, and Taxonomy database. Community driven resource for curated regulatory annotation.

Proper citation: Open Regulatory Annotation Database (RRID:SCR_007835) Copy   


  • RRID:SCR_010646

    This resource has 100+ mentions.

http://www.uniprot.org/help/uniref

Databases which provide clustered sets of sequences from UniProt Knowledgebase and selected UniParc records, in order to obtain complete coverage of sequence space at several resolutions while hiding redundant sequences from view. The UniRef100 database combines identical sequences and sub-fragments with 11 or more residues (from any organism) into a single UniRef entry. The sequence of a representative protein, the accession numbers of all the merged entries, and links to the corresponding UniProtKB and UniParc records are all displayed in the entry. UniRef90 and UniRef50 are built by clustering UniRef100 sequences with 11 or more residues such that each cluster is composed of sequences that have at least 90% (UniRef90) or 50% (UniRef50) sequence identity to the longest sequence (UniRef seed sequence). All the sequences in each cluster are ranked to facilitate the selection of a representative sequence for the cluster.

Proper citation: UniRef (RRID:SCR_010646) Copy   


  • RRID:SCR_012953

    This resource has 500+ mentions.

http://www.informatics.jax.org/

Community model organism database for laboratory mouse and authoritative source for phenotype and functional annotations of mouse genes. MGD includes complete catalog of mouse genes and genome features with integrated access to genetic, genomic and phenotypic information, all serving to further the use of the mouse as a model system for studying human biology and disease. MGD is a major component of the Mouse Genome Informatics.Contains standardized descriptions of mouse phenotypes, associations between mouse models and human genetic diseases, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information. Data are obtained and integrated via manual curation of the biomedical literature, direct contributions from individual investigators and downloads from major informatics resource centers. MGD collaborates with the bioinformatics community on the development and use of biomedical ontologies such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology.

Proper citation: Mouse Genome Database (RRID:SCR_012953) Copy   


  • RRID:SCR_010775

    This resource has 50+ mentions.

http://mendel.stanford.edu/SidowLab/downloads/MAPP/

Java program that predicts the impact of all possible amino acid substitutions on the function of the protein., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: MAPP (RRID:SCR_010775) Copy   


  • RRID:SCR_002113

    This resource has 10+ mentions.

http://pgfe.umassmed.edu/ffs/

Database of Drosophila transcription factor DNA binding specificity using the bacterial one-hybrid method, DNase I or SELEX methods. The database provides community access to recognition motifs and position weight matrices for transcription factors (TFs), including many unpublished motifs. Search tools and flat file downloads are provided to retrieve binding site information (as sequences, matrices and sequence logos) for individual TFs, groups of TFs or for all TFs with characterized binding specificities. Linked analysis tools allow users to identify motifs within the database that share similarity to a query matrix or to view the distribution of occurrences of an individual motif throughout the Drosophila genome. This database and its associated tools provide computational and experimental biologists with resources to predict interactions between Drosophila TFs and target cis-regulatory sequences.

Proper citation: FlyFactorSurvey (RRID:SCR_002113) Copy   


http://zfin.org

Model organism database that serves as central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. Data represented are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations.Serves as primary community database resource for laboratory use of zebrafish. Developed and supports integrated zebrafish genetic, genomic, developmental and physiological information and link this information extensively to corresponding data in other model organism and human databases.

Proper citation: Zebrafish Information Network (ZFIN) (RRID:SCR_002560) Copy   


  • RRID:SCR_021168

    This resource has 50+ mentions.

https://dfam.org/home

Open collection of Transposable Element DNA sequence alignments, hidden Markov Models, consensus sequences, and genome annotations.Dfam 3.2 provides early access to uncurated, de novo generated families.

Proper citation: Dfam (RRID:SCR_021168) Copy   


  • RRID:SCR_016145

    This resource has 50+ mentions.

http://hb.flatironinstitute.org/

Formerly known as GIANT (Genome-scale Integrated Analysis of gene Networks in Tissues), HumanBase applies machine learning algorithms to learn biological associations from massive genomic data collections. These integrative analyses reach beyond existing "biological knowledge" represented in the literature to identify novel, data-driven associations.

Proper citation: HumanBase (RRID:SCR_016145) Copy   


  • RRID:SCR_016551

    This resource has 1+ mentions.

https://phenodb.org/

Database for phenotype genotype associations for humans. Used by clinical researchers to store standardized phenotypic information, diagnosis, and pedigree data and then run analyses on VCF files from individuals, families or cohorts with suspected Mendelian disease.

Proper citation: PhenoDB (RRID:SCR_016551) Copy   


  • RRID:SCR_006165

    This resource has 10+ mentions.

http://phenomebrowser.net/

PhenomeNet is a cross-species phenotype similarity network. It contains the experimentally observed phenotypes of multiple species as well as the phenotypes of human diseases. PhenomeNet provides a measure of phenotypic similarity between the phenotypes it contains. The latest release (from 22 June 2012) contains 124,730 complex phenotype nodes taken from the yeast, fish, worm, fly, rat, slime mold and mouse model organism databases as well as human disease phenotypes from OMIM and OrphaNet. The network is a complete graph in which edge weights represent the degree of phenotypic similarity. Phenotypic similarity can be used to identify and prioritize candidate disease genes, find genes participating in the same pathway and orthologous genes between species. To compute phenotypic similarity between two sets of phenotypes, we use a weighted Jaccard index. First, phenotype ontologies are used to infer all the implications of a phenotype observation using several phenotype ontologies. As a second step, the information content of each phenotype is computed and used as a weight in the Jaccard index. Phenotypic similarity is useful in several ways. Phenotypic similarity between a phenotype resulting from a genetic mutation and a disease can be used to suggest candidate genes for a disease. Phenotypic similarity can also identify genes in a same pathway or orthologous genes. PhenomeNet uses the axioms in multiple species-dependent phenotype ontologies to infer equivalent and related phenotypes across species. For this purpose, phenotype ontologies and phenotype annotations are integrated in a single ontology, and automated reasoning is used to infer equivalences. Specifically, for every phenotype, PhenomeNet infers the related mammalian phenotype and uses the Mammalian Phenotype Ontology for computing phenotypic similarity. Tools: * PhenomeBLAST - A tool for cross-species alignments of phenotypes * PhenomeDrug - method for drug-repurposing

Proper citation: phenomeNET (RRID:SCR_006165) Copy   


  • RRID:SCR_006206

    This resource has 100+ mentions.

http://modencode.org/

A comprehensive encyclopedia of genomic functional elements in the model organisms C. elegans and D. melanogaster. modENCODE is run as a Research Network and the consortium is formed by 11 primary projects, divided between worm and fly, spanning the domains of gene structure, mRNA and ncRNA expression profiling, transcription factor binding sites, histone modifications and replacement, chromatin structure, DNA replication initiation and timing, and copy number variation. The raw and interpreted data from this project is vetted by a data coordinating center (DCC) to ensure consistency and completeness. The entire modENCODE data corpus is now available on the Amazon Web Services EC2 cloud. What this means is that virtual machines and virtual compute clusters that you run within the EC2 cloud can mount the modENCODE data set in whole or in part. Your software can run analyses against the data files directly without experiencing the long waits and logistics associated with copying the datasets over to your local hardware. You may also view the data using GBrowse, Dataset Search, or download the data via FTP, as well as download pre-release datasets.

Proper citation: modENCODE (RRID:SCR_006206) Copy   


  • RRID:SCR_006207

    This resource has 100+ mentions.

http://sparkinsight.org

A clustering and visualization tool that enables the interactive exploration of genome-wide data, with a specialization in epigenomics data. Spark is also available as a service within the Epigenome toolset of the Genboree Workbench. The approach utilizes data clusters as a high-level visual guide and supports interactive inspection of individual regions within each cluster. The cluster view links to gene ontology analysis tools and the detailed region view connects to existing genome browser displays taking advantage of their wealth of annotation and functionality.

Proper citation: Spark (RRID:SCR_006207) Copy   


  • RRID:SCR_006281

    This resource has 5000+ mentions.

http://galaxyproject.org/

Open, web-based platform providing bioinformatics tools and services for data intensive genomic research. Platform may be used as a service or installed locally to perform, reproduce, and share complete analyses. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Community has created Galaxy instances in many different forms and for many different applications including Galaxy servers, cloud services that support Galaxy instances, and virtual machines and containers that can be easily deployed for your own server.The Galaxy team is a part of BX at Penn State, and the Biology and Mathematics and Computer Science departments at Emory University.Training Infrastructure as a Service (TIaaS) is a service offered by some UseGalaxy servers to specifically support training use cases.

Proper citation: Galaxy (RRID:SCR_006281) Copy   


  • RRID:SCR_006454

    This resource has 10+ mentions.

http://lincs.hms.harvard.edu/db/

Database that contains all publicly available HMS LINCS datasets and information for each dataset about experimental reagents and experimental and data analysis protocols. Experimental reagents include small molecule perturbagens, cells, antibodies, and proteins.

Proper citation: HMS LINCS Database (RRID:SCR_006454) Copy   


  • RRID:SCR_006608

    This resource has 100+ mentions.

http://dgidb.genome.wustl.edu/

A database of drug-gene relationships that provides drug-gene interactions and potential druggability data given list of genes. There are about 15 data sources that are being aggregated by DGIdb, with update date and these data sources are listed on this page: http://dgidb.genome.wustl.edu/sources, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: DGIdb (RRID:SCR_006608) Copy   


https://www.phenxtoolkit.org/

Set of measures intended for use in large-scale genomic studies. Facilitate replication and validation across studies. Includes links to standards and resources in effort to facilitate data harmonization to legacy data. Measurement protocols that address wide range of research domains. Information about each protocol to ensure consistent data collection.Collections of protocols that add depth to Toolkit in specific areas.Tools to help investigators implement measurement protocols.

Proper citation: Phenotypes and eXposures Toolkit (RRID:SCR_006532) Copy   


  • RRID:SCR_006873

    This resource has 100+ mentions.

http://bio.math.berkeley.edu/eXpress/index.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented January 29, 2018.
From website: "Note that the eXpress software is also no longer being developed. We recommend you use kallisto instead." Kallisto can be found at http://pachterlab.github.io/kallisto/.

Software for streaming quantification for high-throughput DNA/RNA sequencing.
Can be used in any application where abundances of target sequences need to be estimated from short reads sequenced from them.

Proper citation: eXpress (RRID:SCR_006873) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X