Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://hbatlas.org/pages/publications
A research paper with supplementary materials reporting the generation and analysis of exon-level transcriptome and associated genotyping data. The experiment represented both males and females of multiple ethnicities and examines gene regulation and expression in different areas of the brain. A data set on the human brain transcriptome as well as insights into the transcriptional foundations of human neurodevelopment is provided.
Proper citation: Spatio-temporal transcriptome of the human brain (RRID:SCR_013743) Copy
http://ligand-expo.rutgers.edu/
An integrated data resource for finding chemical and structural information about small molecules bound to proteins and nucleic acids within the structure entries of the Protein Data Bank. Tools are provided to search the PDB dictionary for chemical components, to identify structure entries containing particular small molecules, and to download the 3D structures of the small molecule components in the PDB entry. A sketch tool is also provided for building new chemical definitions from reported PDB chemical components.
Proper citation: Ligand Expo (RRID:SCR_006636) Copy
http://www.open-ephys.org/pulsepal
Open source pulse train generator that allows users to create and trigger software defined trains of voltage pulses with high temporal precision. Generates precisely timed pulse sequences for use in research involving electrophysiology or psychophysics.
Proper citation: Pulse Pal (RRID:SCR_017203) Copy
http://stemcelldb.nih.gov/public.do
Database characterizing and comparing pluripotent human stem cells. The growth and culture conditions of all 21 human embryonic stem cell lines approved under the August 2001 Presidential Executive Order have been analyzed. Available to the scientific community are the results of our rigorous characterization of these cell lines at a more advanced level.
Proper citation: StemCellDB (RRID:SCR_006305) Copy
Public global Protein Data Bank archive of macromolecular structural data overseen by organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). This site provides information about services provided by individual member organizations and about projects undertaken by wwPDB. Data available via websites of its member organizations.
Proper citation: Worldwide Protein Data Bank (wwPDB) (RRID:SCR_006555) Copy
http://senselab.med.yale.edu/odordb
OdorDb is a database of odorant molecules, which can be searched in a few different ways. One can see odorant molecules in the OdorDB, and the olfactory receptors in ORDB that they experimentally shown to bind. You can search for odorant molecules based on their attributes or identities: Molecular Formula, Chemical Abstracts Service (CAS) Number and Chemical Class. Functional studies of olfactory receptors involve their interactions with odor molecules. OdorDB contains a list of odors that have been identified as binding to olfactory receptors.
Proper citation: Odor Molecules DataBase (RRID:SCR_007286) Copy
http://www.gensat.org/daily_showcase.jsp
THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 19, 2012. Due to budgetary constraints, the National Center for Biotechnology Information (NCBI) has discontinued support for the NCBI GENSAT database, and it has been removed from the Entrez System. The Gene Expression Nervous System Atlas (GENSAT) project involves the large-scale creation of transgenic mouse lines expressing green fluorescent protein (GFP) reporter or Cre recombinase under control of the BAC promoter in specific neural and glial cell populations. BAC expression data for all the lines generated (over 1300 lines) are available in online, searchable databases (www.gensat.org and the Database of GENSAT BAC-Cre driver lines). If you have any specific questions, please feel free to contact us at info_at_ncbi.nlm.nih.gov The GENSAT project aims to map the expression of genes in the central nervous system of the mouse, using both in situ hybridization and transgenic mouse techniques. Search criteria include gene names, gene symbols, gene aliases and synonyms, mouse ages, and imaging protocols. Mouse ages are restricted to E10.5 (embryonic day 10.5), E15.5 (embryonic day 15.5), P7 (postnatal day 7), and Adult (adult). The project focuses on two techniques * Evaluation of unmodified mice lines for expression of a given gene using radiolabelled riboprobes and in-situ hybridization. * Creation of transgenic mice lines containing a BAC construct that expresses a marker gene in the same environment as the native gene
Proper citation: GENSAT at NCBI - Gene Expression Nervous System Atlas (RRID:SCR_003923) Copy
http://proteomics.ucsd.edu/Software/NeuroPedia/index.html
A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.
Proper citation: NeuroPedia (RRID:SCR_001551) Copy
A database of brain neuroanatomic volumetric observations spanning various species, diagnoses, and structures for both individual and group results. A major thrust effort is to enable electronic access to the results that exist in the published literature. Currently, there is quite limited electronic or searchable methods for the data observations that are contained in publications. This effort will facilitate the dissemination of volumetric observations by making a more complete corpus of volumetric observations findable to the neuroscience researcher. This also enhances the ability to perform comparative and integrative studies, as well as metaanalysis. Extensions that permit pre-published, non-published and other representation are planned, again to facilitate comparative analyses. Design strategy: The principle organizing data structure is the "publication". Publications report on "groups" of subjects. These groups have "demographic" information as well as "volume" information for the group as a whole. Groups are comprised of "individuals", which also have demographic and volume information for each of the individuals. The finest-grained data structure is the "individual volume record" which contains a volume observation, the units for the observation, and a pointer to the demographic record for individual upon which the observation is derived. A collection of individual volumes can be grouped into a "group volume" observation; the group can be demographically characterized by the distribution of individual demographic observations for the members of the group.
Proper citation: Internet Brain Volume Database (RRID:SCR_002060) Copy
Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.
Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy
https://github.com/felixfiederling/SpinalJ/blob/main/SpineRack.stl
Software tool extension to ImageJ for spinal cord. Used for efficient preparation and imaging of whole spinal cord and the absence of 3D reference atlas.
Proper citation: SpinalJ (RRID:SCR_025437) Copy
http://www.ninds.nih.gov/research/parkinsonsweb/amr/amr_mice_ucla_repository.htm
THIS RESOURCE IS NO LONGER IN SERVICE, documented on April 26, 2011. Information for depositors Investigators who are willing to share mice with the PD research community through this resource should send an email to PDMice_at_ninds.nih.gov describing the mouse. The submission will be reviewed by the PD Models Repository Oversight Committee and, if accepted, a copy of the MTA will be sent by return email. NINDS is most interested in distributing mice that have been characterized in a peer-reviewed publication, but other models will certainly be considered. The email should describe the following: The protocol for identification from tail DNA. The health report of the mice to be shipped (the report has to be less than 2 months old). Information about the strain and any special needs for care and breeding. Information about any publications involving the mice Certification that mice are not encumbered by continuing intellectual property or other rights to any research, data or discovery utilizing the animals. Information for consumers Investigators desiring to study the mice available through the repository should send a request via email to PDMice_at_ninds.nih.gov. Requests will be reviewed by the PD Models Repository Oversight Committee and priority will be determined on a first come, first served basis; two breeding pairs will typically be shipped to any single requester. As detailed in the MTA, mice are not available for commercial research, including but not limited to drug screening. Neither the creator nor UCLA have a role in the governance of the Repository, and specifically, cannot impose conditions upon availability or distribution. It is anticipated that until the Repository is in a mode of steady state production, requests will be collected and mice distributed as supply allows. The email requesting mice should include: A brief description of the protocol Either a copy of the IACUC approval letter or numberNINDS/UCLA Repository for Parkinson's Disease Mouse Models: One of the most immediate and important benefits of discoveries regarding the genetic or environmental causes of Parkinson's disease (PD) is the subsequent development of animal models wherein therapeutic and/or preventative interventions may be studied. The widespread availability of such models is critically important to making progress against a disorder that affects more than 500,000 Americans at any given time. The National Institute of Neurological Disorders and Stroke (NINDS) fully recognizes the burden placed on investigators by the financial and logistical realities of distributing high demand research resources. Some investigators have deposited their mice with national distribution facilities but many mouse models are not available through such resources. Developing means to facilitate greater sharing of mouse models of PD is one of the goals developed by the PD research community at the July 2002 summit meeting convened by the NIH Director. Accordingly, as part of the effort to accelerate PD research, NINDS and the University of California at Los Angeles (UCLA) created a resource that will distribute transgenic mouse models of human PD that are not yet available through national commercial resources. Investigators who are willing to share mice with the PD research community can simply arrange with NINDS to have the mice deposited at UCLA and investigators desiring to study the mice may arrange with NINDS to obtain two breeding pairs. The process will use Material Transfer Agreements created specifically for this arrangement.
Proper citation: NINDS/UCLA Repository for Parkinson's Disease Mouse Models (RRID:SCR_007319) Copy
http://jaxmice.jax.org/list/ra1642.html
Produce new neurological mouse models that could serve as experimental models for the exploration of basic neurobiological mechanisms and diseases. The impetus for the program resulted from the recognition that: * The value of genomic data would remain limited unless more information about the functionality of its individual components became available. * The task of linking genes to specific behavior would best be accomplished by employing a combination of different approaches. In an effort to complement already existing programs, the Neuroscience Mutagenesis Facility decided to use: a random, genome-wide approach to mutagenesis, i.e.N-ethyl-N-nitrosourea (ENU) as the mutagen; a three-generation back-cross breeding scheme to focus on the detection of recessive mutations; behavioral screens selective for the detection of phenotypes deemed useful for the program goals. The resulting mutant mouse lines have been available to the scientific community for the last five years and over 700 NMF mice have been sent to interested investigators for research; these mutant mouse lines will remain available as frozen embryos (which can be re-derived on request) and can be ordered through the JAX customer service at 1-800-422-6423 (or 207-288-5845). The results of the work of the Neuroscience Mutagenesis Facility and that of two other neurogenesis centers, i.e. The Neurogenomics Project at Northwestern University, and the Neuromutagenesis Project of the Tennessee Mouse Genome Consortium, can also be seen at Neuromice.org, a common web site of these three research centers; in addition, information about all mutants produced by these groups has been recorded in MGI.
Proper citation: JAX Neuroscience Mutagenesis Facility (RRID:SCR_007437) Copy
http://ccr.coriell.org/Sections/Collections/NINDS/?SsId=10
Open resource of biological samples (DNA, cell lines, and other biospecimens) and corresponding phenotypic data to promote neurological research. Samples from more than 34,000 unique individuals with cerebrovascular disease, dystonia, epilepsy, Huntington's Disease, motor neuron disease, Parkinsonism, and Tourette Syndrome, as well as controls (population control and unaffected relatives) have been collected. The mission of the NINDS Repository is to provide 1) genetics support for scientists investigating pathogenesis in the central and peripheral nervous systems through submissions and distribution; 2) information support for patients, families, and advocates concerned with the living-side of neurological disease and stroke.
Proper citation: NINDS Repository (RRID:SCR_004520) Copy
http://dx.doi.org/10.5281/zenodo.21157
A graphical source code file used for an automated motion detection and reward system for animal training (see comment for full paper title). It was designed on the LabVIEW programming system. Running the program requires the appropriate LabVIEW runtime software from National Instruments Corporation.
Proper citation: Monkey Motion (RRID:SCR_014285) Copy
https://neurophysics.ucsd.edu/software.php
Matlab-based routines for the detection and clustering of putative single units from a multi-unit time series, along with quality metrics. This sofwtare was developed by the David Kleinfeld Laboratory at UC San Diego.
Proper citation: UltraMegaSort 2000 (RRID:SCR_015857) Copy
http://rkscope.sourceforge.net/
Two photon microscope control software with multi area capabilities.
Proper citation: Scope (RRID:SCR_017454) Copy
Software suite to analyse gait trials collected with Experimental Dynamic Gait Arena for Rodents. Used for rodent gait analysis.
Proper citation: GAITOR Suite (RRID:SCR_023031) Copy
https://github.com/danbider/lightning-pose
Software video centric package for direct video manipulation. Semi supervised animal pose estimation algorithm, Bayesian post processing approach and deep learning package. Improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools.
Proper citation: Lightning Pose (RRID:SCR_024480) Copy
Common data management resource and web portal to promote discovery of Parkinson's Disease diagnostic and progression biomarker candidates for early detection and measurement of disease progression. PDBP will serve as multi-faceted platform for integrating existing biomarker efforts, standardizing data collection and management across these efforts, accelerating discovery of new biomarkers, and fostering and expanding collaborative opportunities for all stakeholders.
Proper citation: Parkinson’s Disease Biomarkers Program Data Management Resource (PDBP DMR) (RRID:SCR_002517) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.