Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 9 showing 161 ~ 180 out of 284 results
Snippet view Table view Download 284 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_007087

http://brainml.org/goto.do?page=.home

Set of standards and practices for using XML to facilitate information exchange between user application software and neuroscience data repositories. It allows for common shared library routines to handle most of the data processing, but also supports use of structures specialized to the needs of particular neuroscience communities. This site also serves as a repository for BrainML models. (A BrainML model is an XML Schema and optional vocabulary files describing a data model for electronic representation of neuroscience data, including data types, formats, and controlled vocabulary. ) It focuses on layered definitions built over a common core in order to support community-driven extension. One such extension is provided by the new NIH-supported neuroinformatics initiative of the Society for Neuroscience, which supports the development of expert-derived terminology sets for several areas of neuroscience. Under a cooperative agreement, these term lists will be made available Open Source on this site.
The repository function of this site includes the following features:
* BrainML models are published in searchable, browsable form.
* Registered users may submit new models or new versions of existing models to accommodate data of interest. * BrainML model schema and vocabulary files are made available at fixed URLs to allow software applications to reference them.
* Users can check models and/or instance documents for correct format before submitting them using an online validation service.
To complement the BrainML modeling language, a set of protocols have been developed for BrainML document exchange between repositories and clients, for indexing of repositories, and for data query.

Proper citation: BrainML (RRID:SCR_007087) Copy   


  • RRID:SCR_007271

    This resource has 100+ mentions.

http://senselab.med.yale.edu/modeldb/

Curated database of published models so that they can be openly accessed, downloaded, and tested to support computational neuroscience. Provides accessible location for storing and efficiently retrieving computational neuroscience models.Coupled with NeuronDB. Models can be coded in any language for any environment. Model code can be viewed before downloading and browsers can be set to auto-launch the models. The model source code has to be available from publicly accessible online repository or WWW site. Original source code is used to generate simulation results from which authors derived their published insights and conclusions.

Proper citation: ModelDB (RRID:SCR_007271) Copy   


http://trans.nih.gov/CEHP/

Trans-NIH project to assess the state of longitudinal and epidemiological research on demographic, social and biologic determinants of cognitive and emotional health in aging adults and the pathways by which cognitive and emotional health may reciprocally influence each other. A database of large scale longitudinal study relevant to healthy aging in 4 domains was created based on responses of investigators conducting these studies and is available for query. The four domains are: * Cognitive Health * Emotional Health * Demographic and Social Factors * Biomedical and Physiologic Factors

Proper citation: Cognitive and Emotional Health Project: The Healthy Brain (RRID:SCR_007390) Copy   


http://www.nntc.org/

Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.

Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy   


  • RRID:SCR_006623

    This resource has 50+ mentions.

http://users.loni.ucla.edu/~shattuck/brainsuite/

Suite of image analysis tools designed to process magnetic resonance images (MRI) of the human head. BrainSuite provides an automatic sequence to extract genus-zero cortical surface mesh models from the MRI. It also provides a set of viewing tools for exploring image and surface data. The latest release includes graphical user interface and command line versions of the tools. BrainSuite was specifically designed to guide its users through the process of cortical surface extraction. NITRC has written the software to require minimal user interaction and with the goal of completing the entire process of extracting a topologically spherical cortical surface from a raw MR volume within several minutes on a modern workstation. The individual components of BrainSuite may also be used for soft tissue, skull and scalp segmentation and for surface analysis and visualization. BrainSuite was written in Microsoft Visual C using the Microsoft Foundation Classes for its graphical user interface and the OpenGL library for rendering. BrainSuite runs under the Windows 2000 and Windows XP Professional operating systems. BrainSuite features include: * Sophisticated visualization tools, such as MRI visualization in 3 orthogonal views (either separately or in 3D view), and overlayed surface visualization of cortex, skull, and scalp * Cortical surface extraction, using a multi-stage user friendly approach. * Tools including brain surface extraction, bias field correction, voxel classification, cerebellum removal, and surface generation * Topological correction of cortical surfaces, which uses a graph-based approach to remove topological defects (handles and holes) and ensure a tessellation with spherical topology * Parameterization of generated cortical surfaces, minimizing a harmonic energy functional in the p-norm * Skull and scalp surface extraction

Proper citation: BrainSuite (RRID:SCR_006623) Copy   


http://intramural.nimh.nih.gov/

The Division of Intramural Research Programs (DIRP) at the National Institute of Mental Health (NIMH) is the internal research division of the NIMH. NIMH DIRP scientists conduct research ranging from studies into mechanisms of normal brain function, conducted at the behavioral, systems, cellular, and molecular levels, to clinical investigations into the diagnosis, treatment and prevention of mental illness. Major disease entities studied throughout the lifespan include mood disorders and anxiety, schizophrenia, obsessive-compulsive disorder, attention deficit hyperactivity disorder, and pediatric autoimmune neuropsychiatric disorders. Because of its outstanding resources, unique funding mechanisms, and location in the nation''s capital, the DIRP is viewed as a national resource, providing unique opportunities in mental health research and research training. Training is conducted in all the Institute''s clinical branches and basic neuroscience laboratories located on the 305-acre National Institutes of Health campus in Bethesda, Maryland. In addition to individualized trainee/mentor-driven postdoctoral training opportunities in the clinical and basic sciences, the DIRP offers Postbaccalaureate Research Training Awards, a Clinical Electives Program, as well as a variety of Summer Research Fellowships and an Undergraduate Internship Program. The mission of the division is to plan and conduct basic, clinical, and translational research to advance understanding of the diagnosis, causes, treatment, and prevention of mental disorders through the study of brain function and behavior; conduct state-of-the-art research that, in part, complements extramural research activities and exploits the special resources of the National Institutes of Health; and provide an environment conducive to the training and development of clinical and basic scientists. In addition the DIRP fosters standards of excellence in the ethical treatment and the provision of clinical care to research subjects; serve as a resource to the NIMH in responding to requests made by the Administration, members of Congress, and citizens'' groups for information regarding mental disorders; and analyzes and evaluates national needs and research opportunities and provides advice to the Institute Director on matters of scientific interest. Core Facilities: * Functional MRI Core * Magnetic Resonance Core * Magnetoencephalography Core * Microarray Core * Neurophysiology Imaging Facility * Non-Human Primate Core * Scientific and Statistical Computing Core * Section on Instrumentation Core * Transgenic Core * Veterinary Medicine Resources

Proper citation: NIMH Division of Intramural Research Programs (RRID:SCR_006860) Copy   


  • RRID:SCR_005656

    This resource has 100+ mentions.

http://neuromorphometrics.com

Neuromorphometrics provides brain labeling and measurement services. Given raw MRI brain scans, we make precise quantitative measurements of the volume, shape, and location of specific neuroanatomical structures. Web tool for brain measurement services. Used for modeling living human brain and make quantitative measurements of volume, shape, and location of specific neuroanatomical structures using given MRI brain scans. Automated analyses are manually guided, inspected and certified by a neuroanatomical expert. Resource of neuroanatomically labeled MRI brain scans database. Resource for neuroanatomical localization and identification: NeuAtlas.

Proper citation: Neuromorphometrics (RRID:SCR_005656) Copy   


http://www.nimh.nih.gov/trials/index.shtml

NIMH supports research studies on mental health and disorders. Participate, refer a patient or learn about results of studies in ClinicalTrials.gov, the NIH/National Library of Medicine''''s registry of federally and privately funded clinical trials for all disease. Find NIH-funded studies currently recruiting participants in the following mental health topics: * Anxiety Disorders ** Generalized Anxiety Disorder ** Obsessive-Compulsive Disorder (OCD) ** Panic Disorder ** Post-traumatic Stress Disorder (PTSD) ** Social Phobia (Social Anxiety Disorder) * Attention Deficit Hyperactivity Disorder (ADHD, ADD) * Autism Spectrum Disorders (Pervasive Developmental Disorders) * Bipolar Disorder (Manic-Depressive Illness) * Borderline Personality Disorder * Depression * Eating Disorders * HIV/AIDS * Schizophrenia * Suicide Prevention Information Resources for NIMH Researchers Conducting Clinical Trials * Limited Access Datasets from NIMH-Supported Clinical Trials * NIMH Policy for Recruitment of Participants in Clinical Research * NIMH Policy on Data and Safety Monitoring in Extramural Investigator-Initiated Clinical Trials * Register a study with ClinicalTrials.gov

Proper citation: NIMH Clinical Trials (RRID:SCR_005613) Copy   


http://www.nimh.nih.gov/educational-resources/neuroscience-and-psychiatry/neuroscience-and-psychiatry-module-1-translating-neural-circuits-into-novel-therapeutics.shtml

This is the first in a series of modules on neuroscience and psychiatry. This module explores research on cognitive deficits, a core feature of schizophrenia and the single best predictor of functional outcomes in this disorder for which we currently have no treatments. This module is an example of how translational neuroscience can provide clues for the development of promising novel therapeutics.

Proper citation: Neuroscience and Psychiatry Module 1: Translating Neural Circuits into Novel Therapeutics (RRID:SCR_005609) Copy   


  • RRID:SCR_005588

    This resource has 1+ mentions.

http://infocenter.nimh.nih.gov/il/public_il/

Database of photographs and illustrations of general biomedical research and research tools, mental health specific research, and treatment related images that are available, copyright free, to the public at no cost. Many images are available in low, medium, and high resolutions. Formats include jpg, gif, and png. NIMH images may not be used to state or imply the endorsement by NIMH or by an NIMH employee of a commercial product, service, or activity, or use in any other manner that might mislead. No fee is charged for using the images. However, credit must be given to the National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services unless otherwise instructed to give credit to the photographer or other source., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: NIMH Image Library (RRID:SCR_005588) Copy   


  • RRID:SCR_001903

    This resource has 1+ mentions.

http://qnl.bu.edu/obart

Tool that provides an interactive method to examine quantitative relationships between brain regions defined by different digital atlases or parcellation methods. Its current focus is for human brain imaging, though the techniques generalize to other domains. The method offers a quantitative answer to the nomenclature problem in neuroscience by comparing brain parts on the basis of their geometrical definitions rather than on the basis of name alone. Thus far these tools have been used to quantitatively compare eight distinct parcellations of the International Consortium for Brain Mapping (ICBM) single-subject template brain, each created using existing atlasing methods. This resources provides measures of global and regional similarity, and offers visualization techniques that allow users to quickly identify the correspondences (or lack of correspondences) between regions defined by different atlases.

Proper citation: OBART (RRID:SCR_001903) Copy   


  • RRID:SCR_017439

https://github.com/epurdom/clusterExperiment

Software open source R package for executing, evaluating and visualizing different clusterings of experimental data, including data from single cell RNA-Seq studies. Software for running and comparing different clusterings of single cell sequencing data.

Proper citation: clusterExperiment (RRID:SCR_017439) Copy   


  • RRID:SCR_017462

https://github.com/YosefLab/FastProject

Software Python tool for low dimensional analysis of single-cell RNA-Seq data. Software package for two dimensional visualization of single cell data. Analyzes gene expression matrix and produces output report in which two-dimensional of data can be explored.

Proper citation: FastProject (RRID:SCR_017462) Copy   


  • RRID:SCR_017595

    This resource has 10+ mentions.

http://www.jwatcher.ucla.edu

Software Java tool for quantitative analysis of behavior. Used to address any theoretical problem that requires complex sequence of actions to be scored by human observer. Runs on microcomputer providing Java Virtual Machine[TM] and has been tested on Windows[TM] and Macintosh[TM] systems. Legacy version (version 0.9) works on older systems (Macintosh OS-9 and Windows-98), while Version 1.0 works well on Macintosh OS-X and Windows XP systems. JWatcher Video works best on Windows XP systems and has reduced functionality running in Macintosh OS-X. JWatcher-Palm can be used to acquire data on Palm OS[TM] equipped device and analyze it on your main computer.

Proper citation: JWatcher (RRID:SCR_017595) Copy   


  • RRID:SCR_017443

    This resource has 1+ mentions.

http://neuroproteomics.scs.illinois.edu/microMS.htm

Software Python platform for image guided Mass Spectrometry profiling. Provides graphical user interface for automatic cell finding and point based registration from whole slide images. Simplifies single cell analysis with feature rich image processing.

Proper citation: microMS (RRID:SCR_017443) Copy   


  • RRID:SCR_017457

    This resource has 1+ mentions.

https://www.ncbi.nlm.nih.gov/pubmed/28653482

Software tool to facilitate tractography based deep brain stimulation (DBS) electrode targeting within patient specific stereotactic coordinate system used in operating room.

Proper citation: StimVision (RRID:SCR_017457) Copy   


  • RRID:SCR_013273

    This resource has 100+ mentions.

http://www.fz-juelich.de/ime/spm_anatomy_toolbox

A MATLAB toolbox which uses three dimensional probabilistic cytoarchitechtonic maps to correlate microscopic, anatomic and functional data of the cerebral cortex. Correlating the activation foci identified in functional imaging studies of the human brain with structural (e.g., cytoarchitectonic) information on the activated areas is a major methodological challenge for neuroscience research. We here present a new approach to make use of three-dimensional probabilistic cytoarchitectonic maps, as obtained from the analysis of human post-mortem brains, for correlating microscopical, anatomical and functional imaging data of the cerebral cortex. We introduce a new, MATLAB based toolbox for the SPM2 software package which enables the integration of probabilistic cytoarchitectonic maps and results of functional imaging studies. The toolbox includes the functionality for the construction of summary maps combining probability of several cortical areas by finding the most probable assignment of each voxel to one of these areas. Its main feature is to provide several measures defining the degree of correspondence between architectonic areas and functional foci. The software, together with the presently available probability maps, is available as open source software to the neuroimaging community. This new toolbox provides an easy-to-use tool for the integrated analysis of functional and anatomical data in a common reference space.

Proper citation: SPM Anatomy Toolbox (RRID:SCR_013273) Copy   


  • RRID:SCR_013664

    This resource has 1+ mentions.

http://nunda.northwestern.edu/nunda/app

A resource for managing study data collected by the Northwestern University neuroimaging community. It includes a secure database, automated pipelines for processing managed data, and tools for exploring and accessing the data. Access to data in the NUNDA is restricted to users authorized by the specific study's investigators. The NUNDA is hosted by the Neuroimaging & Applied Computational Anatomy Lab, and it is modeled after the Washington University's Central Neuroimaging Data Archive (CNDA). The NUNDA is powered by XNAT, an open source software package for managing neuroimaging and related data.

Proper citation: NUNDA (RRID:SCR_013664) Copy   


  • RRID:SCR_014074

    This resource has 1+ mentions.

http://www.hedtags.org/

Strategy guide for HED Annotation. Framework for systematically describing laboratory and real world events.HED tags are comma separated path strings. Organized in forest of groups with roots Event, Item, Sensory presentation, Attribute, Action, Participant, Experiment context, and Paradigm. Used for preparing brain imaging data for automated analysis and meta analysis. Applied to brain imaging EEG, MEG, fNIRS, multimodal mobile brain or body imaging, ECG, EMG, GSR, or behavioral data. Part of Brain Imaging Data Structure standard for brain imaging.

Proper citation: HED Tags (RRID:SCR_014074) Copy   


  • RRID:SCR_013997

    This resource has 10+ mentions.

http://wings-workflows.org

A software application which assists scientists with designing computational experiments. WINGS is a semantic workflow system which incorporates semantic constraints about datasets and workflow components into its workflow representations. The workflow system has an open modular design and can be easily integrated with other existing workflow systems and execution frameworks to extend them with semantic reasoning capabilities. WINGS also allows users to express high-level descriptions of their analysis goals, and assists them by automatically and systematically generating possible workflows that are consistent with that request. In cases where privacy or off-line use are important, WINGS can submit workflows in a scripted format for execution in the local host. It uses Pegasus or OODT as the execution engine for large-scale distributed workflow execution.

Proper citation: WINGS (RRID:SCR_013997) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X