Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://github.com/TonnesenLab/Diffusion-Model/
Software code for simulating diffusion in brain extracellular space images.
Proper citation: Diffusion-Model (RRID:SCR_027942) Copy
http://udn.nichd.nih.gov/brainatlas_home.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 1, 2019. The first brain atlas for the common marmoset to be made available since a printed atlas by Stephan, Baron and Schwerdtfeger published in 1980. It is a combined histological and magnetic resonance imaging (MRI) atlas constructed from the brains of two adult female marmosets. Histological sections were processed from Nissl staining and digitized to produce an atlas in a large format that facilitates visualization of structures with significant detail. Naming of identifiable brain structures was performed utilizing current terminology. For the present atlas, an adult female was perfused through the heart with PBS followed by 10% formalin. The brain was then sent to Neuroscience Associates of Knoxville, TN, who prepared the brain for histological analysis. The brain was cut in the coronal (frontal) plane at 40 microns, every sixth section stained for Nissl granules with thionine and every seventh section stained for myelinated fibers with the Weil technique. The mounted sections were photographed at the NIH (Medical Arts and Photography Branch). The equipment used was a Nikon Multiphot optical bench with Zeiss Luminar 100 mm lens, and scanned with a Better Light 6100 scan back driven by Better Light Viewfinder 5.3 software. The final images were saved as arrays of 6000x8000 pixels in Adobe Photoshop 6.0. A scale in mm provided with these images permitted construction of the final Nissl atlas files with a horizontal and vertical scale. Some additional re-touching (brightness and contrast) was done with Adobe Photoshop Elements 2.0. The schematic (labeled) atlas plates were created from the Nissl images. The nomenclature came almost exclusively from brainmaps.org, where a rhesus monkey brain with structures labeled can be found. The labels for the MRI images were placed by M. R. Zametkin, under supervision from Dr. Newman.
Proper citation: Brain atlas of the common marmoset (RRID:SCR_005135) Copy
http://www.hms.harvard.edu/research/brain/atlas.html
2D mouse brain atlas of high quality coronal Nissl- and myelin-stained sections with labels, 3D images of hippocampal formation and limited other brain structures. The data for this digital atlas are based on the Atlas of the Mouse Brain and Spinal Cord, authored by Richard L. Sidman, Jay. B. Angevine and Elizabeth Taber Pierce, published as a hard cover book by Harvard University Press in 1971 and currently out of print. C57BL/6J strain adult specimens were used in creating the atlas.
Proper citation: High Resolution Mouse Brain Atlas (RRID:SCR_006063) Copy
http://llama.mshri.on.ca/funcassociate/
A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool
Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy
http://vox.pharmacology.ucla.edu/home.html
Two-dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 cubic mm gene expression patterns in the brain obtained through voxelation. Voxelation employs high-throughput analysis of spatially registered voxels (cubes) to produce multiple volumetric maps of gene expression analogous to the images reconstructed in biomedical imaging systems.
Proper citation: Voxelation Map of Gene Expression in a Coronal Section of the Mouse Brain (RRID:SCR_008065) Copy
https://stemcells.nindsgenetics.org/
Cell sources currently include fibroblasts and/or induced pluripotent stem cells for Alzheimer's Disease, Amyotrophic Lateral Sclerosis (ALS), Ataxia-telangiectasia, Frontotemporal Lobar Degeneration (FTD), Huntington's Disease, Parkinson's Disease, and healthy controls. Cell sources, including isogenic cell lines for current and new diseases covered by the NINDS will be added over the next several years.
Proper citation: The NINDS Human Cell and Data Repository (NHCDR) (RRID:SCR_016319) Copy
http://www.nitrc.org/projects/validate29/
Atlas was created from MRI scans of squirrel monkey brains. The atlas is currently comprised of multiple anatomical templates, diffusion MRI templates, and ex vivo templates. In addition, the templates are combined with histologically defined cortical labels, and diffusion tractography defined white matter labels.
Proper citation: VALiDATe29 Squirrel Monkey Brain Atlas (RRID:SCR_015542) Copy
https://miracl.readthedocs.io/en/latest/
Automated software resource that combines histologically cleared volumes with connectivity atlases and MRI, enabling analysis of histological features across multiple fiber tracts and networks, and their correlation with in vivo biomarkers.Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Open source pipeline for automated registration of mice clarity data to Allen reference atlas, segmentation and feature extraction of mice clarity data in 3D, registration of mice multimodal imaging data to Allen reference atlas, tract or label specific connectivity analysis based on Allen connectivity atlas,comparison of diffusion tensort imaging/tractography, virus tracing using CLARITY and Allen connectivity atlas, statistical analysis of CLARITY and Imaging data, atlas generation and label manipulation.
Proper citation: MIRACL (RRID:SCR_020945) Copy
BIAC strives for excellence in its dual mission of research and service. BIAC faculty members are leaders in imaging methodology development, in analysis techniques, as well as in their application in cognitive and clinical neurosciences. In addition, BIAC offers imaging service to other imaging faculty members on campus and at the University of North Carolina in Chapel Hill.
Proper citation: Duke University of North Carolina Brain Imaging and Analysis Center Core Facility (RRID:SCR_001712) Copy
http://mus.well.ox.ac.uk/mouse/INBREDS/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2025. Data set of genotypes available for 480 strains and 13370 successful SNP assays that are mapped to build34 of the mouse genome, including 107 SNPs that are mapped to random unanchored sequence 13374 SNPs are mapped onto Build 33 of the mouse genome. You can access the data relative to Build 33 or Build 34.
Proper citation: Wellcome-CTC Mouse Strain SNP Genotype Set (RRID:SCR_003216) Copy
Neurophysiology imaging core facility that provides anatomical and functional MRI scanning for researchers in the National Institute of Mental Health (NIMH), the National Eye Institute (NEI), and the National Institute for Neurological Disorders and Stroke (NINDS). The shared intramural resource centers on a cutting-edge 4.7T vertical bore scanner dedicated to imaging of nonhuman primates.
Proper citation: Neurophysiology Imaging Facility (RRID:SCR_004080) Copy
http://www.salk.edu/science/core-facilities/gene-transfer-targeting-and-therapeutics-core/
Core facility that provides consultation on the use of viral vector technologies as well as custom design and production services for multiple vector types. The GT3 facilitates the use of these research tools by Salk researchers and others across diverse fields of study such as systems neuroscience, stem cell biology, metabolism, ageing, cancer biology and gene therapy. The GT3 core is a designated Cancer Center Council (C3) core facility. Cancer Center members from participating C3 institutes have preferential rates.
Proper citation: Salk Institute Gene Transfer Targeting and Therapeutics Viral Vector Core Facility (RRID:SCR_014847) Copy
https://www.med.unc.edu/neuroscience/core-facilities/neuro-microscopy/
Microscopy Core for high resolution imaging and aims to make this technology accessible to neuroscientists and other scientific researchers.Provides advanced systems for cellular and molecular imaging of in vitro and in vivo samples, implements new imaging technologies, particularly related to real time and tissue clearing based imaging of neurodevelopment and neural functions, offers training, consultation, data analysis, image processing, and centralized technical expertise.
Proper citation: University of North Carolina at Chapel Hill School of Medicine Neuroscience Microscopy Core Facility (RRID:SCR_019060) Copy
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST
Software model based segmentation and registration tool. Used for segmentation of sub-cortical structures. Introduces basic segmentation and vertex analysis for detecting group differences.
Proper citation: FMRIB’s Integrated Registration and Segmentation Tool (RRID:SCR_024921) Copy
https://github.com/Aharoni-Lab/Ephys-Miniscope
Miniaturized calcium imaging microscope with integrated dense electrode technology for synchronous acquisition of neural activity across distant regions of the brain. Device based off open-sourced UCLA Miniscope to synchronously measure single cell activity at or near spike-time resolution across distant brain regions in freely behaving mice. Used to perform calcium imaging, with dense electrode electrophysiological recording, allowing simultaneous recordings from two remote brain regions in freely behaving mouse.
Proper citation: E-Scope (RRID:SCR_025396) Copy
https://github.com/calico/borzoi
Software package to access the Borzoi models, which are convolutional neural networks trained to predict RNA-seq coverage at 32bp resolution given 524kb input sequences.
Proper citation: Borzoi (RRID:SCR_026619) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.