Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www-genome.stanford.edu/
This resource hyperlinks to systematic analysis projects, resources, laboratories, and departments at Stanford University.
Proper citation: Stanford Genomic Resourses (RRID:SCR_001874) Copy
https://www.genome-cloud.com/user/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 29, 2019. A cloud platform for next-generation sequencing analysis and storage. Services include: * g-Analysis: Automated genome analysis pipelines at your fingertips * g-Cluster: Easy-of-use and cost-effective genome research infrastructure * g-Storage: A simple way to store, share and protect data * g-Insight: Accurate analysis and interpretation of biological meaning of genome data
Proper citation: GenomeCloud (RRID:SCR_011886) Copy
Collaborative project to bring together biochemical pathway databases and research communities focused on plant metabolism. Used to build broad network of plant metabolic pathway databases. Central feature of PMN is PlantCyc, comprehensive plant biochemical pathway database, containing curated information from literature and computational analyses about genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism.
Proper citation: Plant Metabolic Network (RRID:SCR_002888) Copy
http://sourceforge.net/projects/ipig/
Standalone software tool for the integration of peptide identifications from mass spectrometry experiments into existing genome browser visualizations.
Proper citation: iPiG (RRID:SCR_016164) Copy
https://github.com/gatech-genemark/ProtHint
Software pipeline for predicting and scoring hints (in form of introns, start and stop codons) in genome of interest by mapping and spliced aligning predicted genes to database of reference protein sequences.
Proper citation: ProtHint (RRID:SCR_021167) Copy
http://www.clcbio.com/products/clc-main-workbench/
A suite of software for DNA, RNA and protein sequence data analysis. The software allows for the analysis and visualization of Sanger sequencing data as well as gene expression analysis, molecular cloning, primer design, phylogenetic analyses, and sequence data management.
Proper citation: CLC Main Workbench (RRID:SCR_000354) Copy
https://github.com/MicrosoftGenomics/FaST-LMM
FaST-LMM (Factored Spectrally Transformed Linear Mixed Models) is a set of tools for efficiently performing genome-wide association studies (GWAS), prediction, and heritability estimation on large data sets.
Proper citation: FaST LMM (RRID:SCR_015506) Copy
https://github.com/HajkD/LTRpred
Software package for automated functional annotation of LTR retrotransposons for comparative genomics studies. Used to perform de novo functional annotation of LTR retrotransposons from any genome assembly in fasta format.
Proper citation: LTRpred (RRID:SCR_017031) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
Genome wide map of putative transcription factor binding sites in Arabidopsis thaliana genome.Data in AthaMap is based on published transcription factor (TF) binding specificities available as alignment matrices or experimentally determined single binding sites.Integrated transcriptional and post transcriptional data.Provides web tools for analysis and identification of co-regulated genes. Provides web tools for database assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.
Proper citation: AthaMap (RRID:SCR_006717) Copy
http://www.cdtdb.brain.riken.jp/CDT/Top.jsp
Transcriptomic information (spatiotemporal gene expression profile data) on the postnatal cerebellar development of mice (C57B/6J & ICR). It is a tool for mining cerebellar genes and gene expression, and provides a portal to relevant bioinformatics links. The mouse cerebellar circuit develops through a series of cellular and morphological events, including neuronal proliferation and migration, axonogenesis, dendritogenesis, and synaptogenesis, all within three weeks after birth, and each event is controlled by a specific gene group whose expression profile must be encoded in the genome. To elucidate the genetic basis of cerebellar circuit development, CDT-DB analyzes spatiotemporal gene expression by using in situ hybridization (ISH) for cellular resolution and by using fluorescence differential display and microarrays (GeneChip) for developmental time series resolution. The CDT-DB not only provides a cross-search function for large amounts of experimental data (ISH brain images, GeneChip graph, RT-PCR gel images), but also includes a portal function by which all registered genes have been provided with hyperlinks to websites of many relevant bioinformatics regarding gene ontology, genome, proteins, pathways, cell functions, and publications. Thus, the CDT-DB is a useful tool for mining potentially important genes based on characteristic expression profiles in particular cell types or during a particular time window in developing mouse brains.
Proper citation: Cerebellar Development Transcriptome Database (RRID:SCR_013096) Copy
The goals of Antibiotic Resistance Genes Database (ARGB) are to provide a centralized compendium of information on antibiotic resistance, to facilitate the consistent annotation of resistance information in newly sequenced organisms, and also to facilitate the identification and characterization of new genes. ARGB contains six types of database groups: - Resistance Type: This database contains information, such as resistance profile, mechanism, requirement, epidemiology for each type. - Resistance Gene: This database contains information, such as resistance profile, resistance type, requirement, protein and DNA sequence for each gene.This database only includes NON-REDUNDANT, NON-VECTOR, COMPLETE genes. - Antibiotic: This database contains information, such as producer, action mechanism, resistance type, for each gene. - Resistance Gene(NonRD): This database contains the same information as Resistance Gene. It does NOT include NON-REDUNDANT, NON-VECTOR genes, but includes INCOMPLETE genes. - Resistance Gene(ALL): This database contains the same information as Resistance Gene. It includes all REDUNDANT, VECTOR AND INCOMPLETE genes. - Resistance Species: This database contains resistance profile and corresponding resistance genes for each species. Furthermore, ARDB also contians three types BLAST database: - Resistance Genes Complete: Contains only NON-REDUNDANT, NON-VECTOR, COMPLETE genes sequences. - Resistance Genes Non-redundant: Contains NON-REDUNDANT, NON-VECTOR, COMPLETE, INCOMPLETE genes sequences. - Resistance Genes All: Contains all REDUNDANT, VECTOR, COMPLETE, INCOMPLETE genes sequences. Lastly, ARDB provides four types of Analytical tools: - Normal BLAST: This function allows an user to input a DNA or protein sequence, and find similar DNA (Nucleotide BLAST) or protein (Protein BLAST) sequences using blastn, blastp, blastx, tblastn, tblastx - RPS BLAST: A web RPSBLAST (RPS BLAST) interface is provided to align a query sequence against the Position Specific Scoring Matrix (PSSM) for each type. Normally, this will give the same annotation information as using regular BLAST mentioned above. - Multiple Sequences BLAST (Genome Annotation): This function allows an user to annotate multiple (less than 5000) query sequences in FASTA format. - Mutation Resistance Identification: This function allows an user to identify mutations that will cause potential antibiotic resistance, for 12 genes (16S rRNA, 23S rRNA, gyrA, gyrB, parC, parE, rpoB, katG, pncA, embB, folP, dfr). ������ :Sponsors: ARDB is funded by Uniformed Services University of the Health Sciences, administered by the Henry Jackson Foundation. :
Proper citation: Antibiotic Resistance Genes Database (RRID:SCR_007040) Copy
http://www-sequence.stanford.edu/group/candida/
The Stanford Genome Technology Center began a whole genome shotgun sequencing of strain SC5314 of Candida albicans. After reaching its original goal of 1.5X mean coverage of the haploid genome (16Mb) in summer, 1998, Stanford was awarded a supplemental grant to continue sequencing up to a coverage of 10X, performing as much assembly of the sequence as possible, using recognizable genes as nucleation points. Candida albicans is one of the most commonly encountered human pathogens, causing a wide variety of infections ranging from mucosal infections in generally healthy persons to life-threatening systemic infections in individuals with impaired immunity. Oral and esophogeal Candida infections are frequently seen in AIDS patients. Few classes of drugs are effective against these fungal infections, and all of them have limitations with regard to efficacy and side-effects.
Proper citation: Sequencing of Candida Albicans (RRID:SCR_013437) Copy
A SEED-quality automated service that annotates complete or nearly complete bacterial and archaeal genomes across the entire phylogenetic tree. RAST can also be used to analyze draft genomes.
Proper citation: RAST Server (RRID:SCR_014606) Copy
Software tool for multi-omics data analysis that can perform complex and personalized analysis. Network regulation and molecular mechanism models can be customized according to the requirements of the users.
Proper citation: OmicsBean (RRID:SCR_016322) Copy
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.
Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy
http://www.gene-regulation.com/pub/databases.html
In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.
Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy
The project began as a pilot study to identify inherited genetic susceptibility to prostate and breast cancer. CGEMS has developed into a robust research program involving genome-wide association studies (GWASs) for a number of cancers to identify common genetic variants that affect a person''s risk of developing cancer. In collaboration with extramural scientists, NCI''s Division of Cancer Epidemiology and Genetics (DCEG) has carried out genome-wide scans for breast, prostate, pancreatic, and lung cancers, while a GWAS of bladder cancer is currently underway. By making the data available to both intramural and extramural research scientists, as well as those in the private sector through rapid posting, NIH can leverage its resources to ensure that the dramatic advances in genomics are incorporated into rigorous population-based studies. Ultimately, findings from these studies may yield new preventive, diagnostic, and therapeutic interventions for cancer. Sponsors: This resource is supported by the U.S. National Institues Of Health.
Proper citation: CGEMS (RRID:SCR_008445) Copy
https://github.com/Nextomics/NextPolish
Software tool to fix base errors SNV/Indel in genome generated by noisy reads. Used to correct error bases in reference genome.
Proper citation: NextPolish (RRID:SCR_025232) Copy
http://www.nervenet.org/main/dictionary.html
A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.
Proper citation: Mouse Genome Databases (RRID:SCR_007147) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.