Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 out of 2,379 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_003678

    This resource has 100+ mentions.

http://www.biostat.wustl.edu/~adrc/cdrpgm/

A numeric scale used to quantify the severity of symptoms of dementia (i.e. its stage). Using a structured-interview protocol, a qualified health professional assesses a patient's cognitive and functional performance in six areas: memory, orientation, judgment and problem solving, community affairs, home and hobbies, and personal care. Scores in each of these are combined to obtain a composite score ranging from 0 through 3. (Adapted from Wikipedia)

Proper citation: Clinical Dementia Rating (RRID:SCR_003678) Copy   


https://clinicaltrials.gov/ct2/show/NCT00014001

The NIMH-funded Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Study was a nationwide public health-focused clinical trial that compared the effectiveness of older (first available in the 1950s) and newer (available since the 1990s) antipsychotic medications used to treat schizophrenia. These newer medications, known as atypical antipsychotics, cost roughly 10 times as much as the older medications. CATIE is the largest, longest, and most comprehensive independent trial ever done to examine existing therapies for this disease. Schizophrenia is a brain disorder characterized by hallucinations, delusions, and disordered thinking. The course of schizophrenia is variable, but usually is recurrent and chronic, often causing severe disability. Previous studies have shown that taking antipsychotic medications consistently is far more effective than taking no medicine and that the drugs are necessary to manage the disease. The aim of the CATIE study was to determine which medications provide the best treatment for schizophrenia. Additional information may be found by following the links, http://www.nimh.nih.gov/trials/practical/catie/index.shtml, http://www.clinicaltrials.gov/ct/show/NCT00014001?order=1

Proper citation: CATIE - Clinical Antipsychotic Trials in Intervention Effectiveness (RRID:SCR_005615) Copy   


  • RRID:SCR_000209

https://www.pkdcure.org/

Organization and funder of polycystic kidney disease research to find treatments. The organization also raises awareness for the disease through education, advocacy and support.

Proper citation: PKD Foundation (RRID:SCR_000209) Copy   


https://bli.uci.edu/laser-microbeam-program/

Biomedical technology research center dedicated to the use of lasers and optics in biology and medicine with activities in technological research and development, collaborative research, service, training, and dissemination. One of the primary goals of LAMMP is to facilitate translational research by rapidly moving basic science and technology discoveries from blackboard to benchtop to bedside. This is accomplished by combining state of the art optical technologies with specialized resource facilities for cell and tissue engineering, histopathology, pre-clinical animal models, and clinical care. The resource center has been organized into 3 cores: * Microscopy and Microbeam Technologies (MMT) for high-resolution functional imaging and manipulation of living cells and tissues * Medical Translational Technologies (MTT) for non- and minimally-invasive monitoring, treating, and imaging pre-clinical animal models and human subjects, and * Virtual Photonics Technologies (VPT) for developing computational models and methods that advance the performance of biophotonic technologies, and enhance the information content derived from optical measurements. LAMMP cores contain complementary technologies that are capable of quantitatively characterizing, imaging, and perturbing structure and biochemical function in cells and tissues with scalable resolution and depth sensitivity ranging from micrometers to centimeters.

Proper citation: Laser Microbeam and Medical Program (RRID:SCR_001409) Copy   


http://www.civm.duhs.duke.edu/

Biomedical technology research center dedicated to the development of novel imaging methods for the basic scientist and the application of the methods to important biomedical questions. The CIVM has played a major role in the development of magnetic resonance microscopy with specialized MR imaging systems capable of imaging at more than 500,000x higher resolution than is common in the clinical domain. The CIVM was the first to demonstrate MR images using hyperpolarized 3He which has been moved from mouse to man with recent clinical trials performed at Duke in collaboration with GE. More recently the CIVM has developed the molecular imaging workbench---a system dedicated to multimodality cardiopulmonary imaging in the rodent. Their collaborators are employing these unique imaging systems in an extraordinary range of mouse and rat models of neurologic disease, cardiopulmonary disease and cancer to illuminate the underlying biology and explore new therapies.

Proper citation: Center for In Vivo Microscopy (RRID:SCR_001426) Copy   


https://www.med.upenn.edu/CAMIPM/

Biomedical technology research center dedicated to the development and application of innovative, novel magnetic resonance and optical imaging techniques. The facility's core sections provide research and computing resources for numerous user, collaborative, and training projects. The focus of this resource is on developing instrumentation, methodologies, and data analysis techniques for the quantitative assessment of functional, structural, and metabolic parameters in humans with the use of multinuclear magnetic resonance, novel spectral, perfusion, functional, and optical imaging techniques. These technological developments are driven by collaboration with scientists from within and outside University of Pennsylvania, the primary institution. Specifically, the Resource is focused on the development of quantitative, noninvasive MR and optical imaging based biomarkers for studying tissue metabolism and function, with an eye towards clinical translation through early diagnosis. The Center also provides support in the development and evaluation of new therapies in a variety of diseases.

Proper citation: Center for Magnetic Resonance and Optical Imaging (RRID:SCR_001428) Copy   


http://www.ncigt.org/

Biomedical Technology Resource Center that serves as a national resource for all aspects of research into medical procedures that are enhanced by imaging. Its common goal is to provide more effective patient care. The center is focused on the multidisciplinary development of innovative image-guided intervention technologies to enable effective, less invasive clinical treatments that are not only more economical, but also produce better results for patients. The NCIGT is helping to implement this vision by serving as a proving ground for some of the next generation of medical therapies.

Proper citation: National Center for Image-Guided Therapy (RRID:SCR_001419) Copy   


  • RRID:SCR_008998

    This resource has 1+ mentions.

http://nac.spl.harvard.edu/

Biomedical Technology Resource Center that develops image processing and analysis techniques for basic and clinical neurosciences. The NAC research approach emphasizes both specific core technologies and collaborative application projects. The core activity of the center is the development of algorithms and techniques for postprocessing of imaging data. New segmentation techniques aid identification of brain structures and disease. Registration methods are used for relating image data to specific patient anatomy or one set of images to another. Visualization tools allow the display of complex anatomical and quantitative information. High-performance computing hardware and associated software techniques further accelerate algorithms and methods. Digital anatomy atlases are developed for the support of both interactive and algorithmic computational tools. Although the emphasis of the NAC is on the dissemination of concepts and techniques, specific elements of the core software technologies have been made available to outside researchers or the community at large. The NAC's core technologies serve the following major collaborative projects: Alzheimer's disease and the aging brain, morphometric measures in schizophrenia and schizotypal disorder, quantitative analysis of multiple sclerosis, and interactive image-based planning and guidance in neurosurgery. One or more NAC researchers have been designated as responsible for each of the core technologies and the collaborative projects.

Proper citation: Neuroimage Analysis Center (RRID:SCR_008998) Copy   


http://www.brainbank.mclean.org/

Biomaterial supply resource that acquires, processes, stores, and distributes postmortem brain specimens for brain research. Various types of brain tissue are collected, including those with neurological and psychiatric disorders, along with their parents, siblings and offspring. The HBTRC maintains an extensive collection of postmortem human brains from individuals with Huntington's chorea, Alzheimer's disease, Parkinson's disease, and other neurological disorders. In addition, the HBTRC also has a collection of normal-control specimens.

Proper citation: Harvard Brain Tissue Resource Center (RRID:SCR_003316) Copy   


http://www.slu.edu/x23032.xml

A brain bank which provides brain tissue for interdisciplinary research in neurochemical, anatomical, epidemiological and clinical aspects of Alzheimer's disease. It provides brain tissue from Alzheimer's patients and healthy elderly brain donors to investigators who are helping further the understanding of Alzheimer's disease through research. It also gives family members of Alzheimer's patients the opportunity to obtain a confirmed diagnosis through brain autopsy. Through this program, families of individuals with either a clinical diagnosis, or those with suspected Alzheimer's disease, grant permission for a brain autopsy to be performed immediately after death.

Proper citation: St. Louis University Alzheimer's Brain Bank (RRID:SCR_005132) Copy   


http://www.med.umkc.edu/psychiatry/nbtb/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The UMKC Neuroscience Brain Tissue Bank and Research Laboratory has been established to obtain, process, and distribute human brain tissue to qualified scientists and clinicians dedicated to neuroscience research. No other living organ approaches the human brain in complexity or capacity. Healthy, it astounds and inspires miracles. Diseased, it confounds and diminishes hope. The use of human brain tissue for research will provide insight into the anatomical and neurochemical aspects of diseased and non-diseased brains. While animal models are helpful and necessary in understanding disease, certain disorders can be more efficiently studied using human brain tissue. Also, modern research techniques are often best applied to human tissue. We also need samples of brain tissue that have not been affected by disease. They help us to compare a 'normal' brain with a diseased one. Also, we have a critical need for brain donations from relatives who have genetically inherited disorders. Tissue preparation consists of fresh quick-frozen tissue blocks or coronal slices (nitrogen vapor frozen; custom dissection of specific anatomic regions) or formalin-fixed coronal slices (custom dissection of specific anatomic regions).

Proper citation: UMKC Neuroscience Brain Tissue Bank and Research Laboratory (RRID:SCR_005148) Copy   


http://www.tnp.pitt.edu/pages/donationfrm_mb.htm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 19,2024. Brain tissue donation is a valuable contribution to mental health research. It enables scientists to investigate how the normal brain works, and how the brain is disturbed when it is affected by schizophrenia, depression, bipolar (manic depressive) disease or other related disorders. The Department of Psychiatry at the University of Pittsburgh has established a brain tissue bank to which brain tissue can be donated at no expense. The gift of brain tissue enables scientists to conduct research designed to understand causes, to develop new treatments, and ultimately to find cures for diseases that affect the brain. Brain tissue donation is a gift that makes it possible for researchers to study various types of mental disorders. Donations of brain tissue from individuals without these disorders are also needed to establish comparisons with brain samples from individuals who have these disorders. Any legally competent adult or guardian may indicate during life their interest in donating brain tissue after death. Next-of-kin either of healthy individuals or of those with psychiatric disorders may give consent to donate brain tissue following the death of a loved one. Brain tissue is removed during autopsy at a morgue or hospital and is transported to the University of Pittsburgh Medical Center for examination and study.

Proper citation: University of Pittsburgh Brain Tissue Donation Program (RRID:SCR_005028) Copy   


https://adrc.mc.duke.edu/index.php/research/brain-bank

A research repository of human brains with neurological disorders and normal controls, recruited through the Autopsy and Brain Donation Program coordinator. The Kathleen Price Bryan Brain Bank contains brains from patients with Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Muscular Dystrophy, and other neurological and dementing disorders. The brain tissue is subjected to a detailed neuropathological evaluation and then stored as fixed and frozen hemispheres, paraffin blocks and histological slides. After receipt of an IRB approved request, tissue is supplied to investigators at Duke University, major medical centers and pharmaceutical companies across the United States and worldwide.

Proper citation: Duke University Kathleen Price Bryan Brain Bank (RRID:SCR_005022) Copy   


https://www.lawsonresearch.com/clinical_research/brain_tumour_bank.htm

To aid researchers, the Brain Tumour Tissue Bank, located located in London Health Sciences Centre in London, Ontario, Canada has been collecting human brain tumor specimens and matching clinical data for neuro-oncology research in Canada and internationally since its establishment in 1991. A wide variety of primary and secondary brain tumors, spinal tumors, peritumors and normal brain tissues are available for molecular, protein, enzyme and immunohistochemical studies. Interested researchers can review the information provided at the website and can contact the tissue bank for information about what is currently available. In order to complete a request, an application must be completed.

Proper citation: Lawson Brain Tumour Tissue Bank (RRID:SCR_004881) Copy   


http://www.neurosci.ucsd.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The Laboratory of Experimental Neuropathology is engaged in the study of neurodegenerative disease, including Alzheimer's, Parkinson's, and the dementia of HIV encephalitis. It contains a large bank of materials available to fellow investigators including images, publications, and lab safety. Fellow Investigators and Collaborators may request materials from the brain bank. Technologies employed by the laboratory include immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy.

Proper citation: UCSD Experimental Neuropath Laboratory (RRID:SCR_004906) Copy   


http://www.braintumourbank.ca/pages/about.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. The mission of the Canadian Virtual Brain Tumour Bank (CVBTB) is to facilitate clinical, molecular and translational research through the provision of well-characterized tissue linked to clinical data and to become a standardized national tissue resource whereby scientific needs are met, addressed and accelerated through a common public accessible core the CVBTB. Recognizing the need to encourage systemic banking of brain tumor tissues throughout the country and to link banks of brain tumor tissue samples with academic and scientific institutions that require these samples, the CVBTB was established. Under the sponsorship of Schering Plough Canada Inc. and in association with the Canadian Brain Tumour Consortium (CBTC), the CVBTB looks to act as a resource for all researchers to provide them with information on the types of brain tumor tissue samples available and to direct them to the tumor tissue banking sites holding these samples. The CVBTB also looks to provide information on standard operating procedures regarding aspects of tumor tissue banking such as tissue accrual, storage and shipment and the processing of blood samples such as serum and lymphocytes. The CVBTB currently consists of four brain tumour tissue banking sites (Toronto Western Hospital - Toronto, Ontario; London Health Sciences Centre - London, Ontario; McGill University - Montreal, Quebec; University of Calgary - Calgary, Alberta) and is continuously looking for more institutions to be a part of the CVBTB. If your institution would like to become a part of the CVBTB, please contact the CVBTB coordinator.

Proper citation: Canadian Virtual Brain Tumour Bank (RRID:SCR_004221) Copy   


http://www.essentialtremor.us/

Finding a cure for any neurological disorder begins with the scientific study of the disorder''s causes, processes, and development in the brain. For essential tremor (ET), rigorous study of this kind had not been undertaken until 2003, when the Essential Tremor Centralized Brain Repository (ETCBR) was established at Columbia University. For the past five years, brain tissue from ET donors has been collected, processed and compared alongside age-matched control brains at the ETCBR, and already several significant findings have been made. However, there is still much to learn and a severe shortage of ET brains for scientific study. If you have been diagnosed with essential tremor, donating your brain tissue in the hours immediately after your death is of utmost importance in providing crucial information about what causes ET. Direct analysis of the shape and number of nerve cells and their content will provide medical researchers with the information they need in order to understand this complex illness. By advancing our medical knowledge of ET, the gift of brain tissue is a central piece of the puzzle in the search to develop better treatments and find a cure.

Proper citation: Essential Tremor Centralized Brain Repository (RRID:SCR_004464) Copy   


http://www.mscenter.org/research/tissue-bank/

Scientists throughout the world depend on the Rocky Mountain MS Center Tissue Bank to supply high quality human brain tissue and cerebral spinal fluid to support their research. Funded in part by the National MS Society, the Tissue Bank is one of only four MS-related tissue banks in the nation. The Tissue Bank has distributed specimens to more than 160 investigators worldwide and over 1,600 people have consented to be donors after death. Tissue banks provide a unique bridge between those who live with MS and the scientific community. Studies conducted with samples from the Center have led to several important discoveries and 130 publications. While deeply personal, the decision to donate has far-reaching effects as scientists unlock the mysteries of multiple sclerosis. If you would like to donate, arrangements must be made in advance because it is important that tissue is taken within a few hours of death. For more information on making a donation, visit the How To Donate section of this website and contact the Rocky Mountain MS Center Tissue Bank at 303.788.4030 x111.

Proper citation: Rocky Mountain MS Center Tissue Bank (RRID:SCR_004361) Copy   


https://www.bannerhealth.com/research/locations/sun-health-institute/programs/body-donation

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. An autopsy-based, research-devoted brain bank, biobank and biospecimen bank that derives its human donors from the Arizona Study of Aging and Neurodegenerative Disease (AZSAND), a longitudinal clinicopathological study of the health and diseases of elderly volunteers living in Maricopa county and metropolitan Phoenix, Arizona. Their function is studied during life and their organs and tissue after death. To date, they have concentrated their studies on Alzheimer's disease, Parkinson's disease, heart disease and cancer. They share the banked tissue, biomaterials and biospecimens with qualified researchers worldwide. Registrants with suitable scientific credentials will be allowed access to a database of available tissue linked to relevant clinical information, and will allow tissue requests to be initiated., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Brain and Body Donation Program (RRID:SCR_004822) Copy   


http://brainbank.ucla.edu/

A biomaterial supply resource which collects, stores, and distributes donated tissue to research scientists around the world. Collection occurs through the an anatomical donor program which accepts tissue donation from people with neurological/ psychiatric disorders. The Center also provides a continuous boost to biomedical research by providing high quality and quantity of pre- and post-mortem brains, spinal cords, cerebrospinal fluid (CSF), serum, blood cells and urine to use in investigations of neurological and psychiatric diseases. Scientists without a clinical site may use the Center''s readily available, high quality banked specimens.

Proper citation: Human Brain and Spinal Fluid Resource Center (RRID:SCR_004811) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X