Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.gladstone.ucsf.edu/gladstone/site/gind/
GIND provides a highly interactive academic environment and state-of-the-art research facilities that are ideal for training in neuroscience and biomedical research. GIND Investigators hold university appointments at UCSF and participate in educational activities, including the teaching and training of graduate students and postdoctoral fellows. Additionally, GIND is actively engaged in efforts to translate scientific discoveries into better treatments for major diseases of the nervous system. Sponsors: Support for GIND comes from the University of California at San Francisco.
Proper citation: Gladstone Institute of Neurological Disease (RRID:SCR_008072) Copy
Lab interested in understanding how neuronal circuitries of the brain support its cognitive capacities. Its goal is to provide rational, mechanistic explanations of cognitive functions at a descriptive level. In the lab''s view, the most promising area of cognitive faculties for scientific inquiry is memory, since it is a well-circumscribed term, can be studied in animals and substantial knowledge has accumulated on the molecular mechanisms of synaptic plasticity. Available software: * NeuroScope: NeuroScope can display local field potentials (EEG), neuronal spikes, behavioral events, as well as the position of the animal in the environment. It also features limited editing capabilities. * Klusters: Klusters is a powerful and easy-to-use cluster cutting application designed to help neurophysiologists sort action potentials from multiple neurons on groups of electrodes (e.g., tetrodes or multisite silicon probes). * KlustaKwik: KlustaKwik is a program for automatic cluster analysis, specifically designed to run fast on large data sets. * MATLAB m-files: A selection of MATLAB files developed in the lab., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Buzsaki Lab (RRID:SCR_008020) Copy
http://www.neuroscience.cam.ac.uk/
This portal provides information about the neuroscience department at the University of Cambridge. Cambridge has a strong tradition in neuroscience having been host to the first analyses of neural signaling in the 1930s, determined the mechanisms of neuronal firing in the 1950s, and heralded some of the early theoretical approaches to the functions of neural circuitry in the 1960s. Neuroscience continues to grow at Cambridge, with an impressive record of achievement in multidisciplinary research.
Proper citation: Cambridge Neuroscience Department (RRID:SCR_008649) Copy
http://www.jax.org/imr/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 08, 2012. The function of the IMR is to select, import, cryopreserve, maintain, and distribute these important strains of mice to the research community. To improve their value for research, the IMR also undertakes genetic development of stocks, such as transferring mutant genes or transgenes to defined genetic backgrounds and combining transgenes and/or targeted mutations to create new mouse models for research. The function of the IMR is to: * select biomedically important stocks of transgenic, chemically induced, and targeted mutant mice * import these stocks into the Jackson Laboratory by rederivation procedures that rid them of any pathogens they might carry * cryopreserve embryos from these stocks to protect them against accidental loss and genetic contamination * backcross the mutation onto an inbred strain, if necessary * distribute them to the scientific community More than 1000 mutant stocks have been accepted by the IMR from 1992 through December 2006. Current holdings include models for research on cancer; breast cancer; immunological and inflammatory diseases; neurological diseases; behavioral, cardiovascular and heart diseases; developmental, metabolic and other diseases; reporter (e.g., GFP) and recombinase (e.g., cre/loxP) strains. About eight strains a month are being added to the IMR holdings. Research is being conducted on improved methods for assisted reproduction and speed congenic production. Most of the targeted mutants arrive on a mixed 129xC57BL/6 genetic background, and as many of these as possible are backcrossed onto an inbred strain (usually C57BL/6J). In addition, new mouse models are being created by intercrossing carriers of specific transgenes and/or targeted mutations. Simple sequence length polymorphism DNA markers are being used to characterize and evaluate differences between inbred strains, substrains, and embryonic stem cell lines.
Proper citation: Induced Mutant Resource (RRID:SCR_008366) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented September 6, 2016. AMBeR's aim is to bring together Australia's unique resources for genetic epidemiology and genomics with high level expertise in bioinformatics and statistical science, conduct advanced methodological research, develop new research capacity and competitiveness in cutting-edge techniques, bring them to bear on important medical research problems, train young Australians in bioinformatics and advanced biostatistics, and transfer this expertise to the medical research community.
Proper citation: Australian Medical Bioinformatics Resource (RRID:SCR_008385) Copy
http://portal.ncibi.org/gateway/bcde.html
Biological Concept Diagram Editor (BCDE) is a conceptual relationship diagramming tool specifically designed for biomedical researchers. It allows for efficient knowledge and data capture, fast diagram creation, easy data retrieval, and flexible exporting. The BCDE application is the main diagramming tool in the system. Through it, users can create, modify, load, and save BCDE diagrams. The diagrams created with BCDE application are network oriented. Each BCDE figure can be annotated using fields from the BioPAX level II format. In addition, a user can add URL links and attachments to a BCDE figure. Diagrams generated in BCDE are stored in the BCDE XML format for better database integration and better data extraction.
Proper citation: Biological Concept Diagram Editor (RRID:SCR_008654) Copy
http://faculty.washington.edu/chudler/ehc.html
This web site focuses on neuroscience, the study of the nervous system. Links on this page are limited to those Dr. Chundler finds to be the most interesting and useful.
Proper citation: Eric H. Chundlers Links (RRID:SCR_008328) Copy
Aggregator of blogs about new developments in science and other fields that allows readers to easily find blog posts about serious peer-reviewed research, instead of just news reports and press releases. If you''re a blogger who writes about serious research, Research Blogging offers you a way to distinguish your serious posts from news, politics, family, bagpipes, and so on. They can direct your regular readers - and new readers - to the posts you''ve worked the hardest to create. All you need to get started is a blog and a peer-reviewed research report that you''d like to discuss. How it works * Bloggers -- often experts in their field -- find exciting new peer-reviewed research they''d like to share. They write thoughtful posts about the research for their blogs. * Bloggers register and use a simple one-line form to create a snippet of code to place in their posts. This snippet not only notifies this site about their post, it also creates a properly formatted research citation for their blog. * Their software automatically scans registered blogs for posts containing their code snippet. When it finds them, it indexes them and displays them on their front page -- thousands of posts from hundreds of blogs, in one convenient place, organized by topic. * Their editors identify the notable posts in each major discipline, publishing the results on their news page. * Other services like PubGet index their database as well, so every time readers search for a journal article, they can also locate blog posts discussing the article. * The quality of the posts listed on their site is monitored by the member bloggers. If a post doesn''t follow their guidelines, it is removed from their database. Borderline cases may be discussed publicly on the blog as well. Bloggers are also provided with an icon they can use to show when they''re talking about a peer-reviewed work that they''ve read and analyzed closely. There are already over seven thousand blog posts using the icon, and now it''s easier than ever to find them.
Proper citation: Research Blogging (RRID:SCR_008786) Copy
http://www.muschealth.com/multimedia/Podcasts/index.aspx?type=main
The MUSChealth.com Podcast Library, featuring podcasts on a variety of topics related to your health and our services here at MUSC. These medical podcasts are hosted by MUSC faculty, physicians and special guests and are produced and directed by Linda Austin, M.D. Current topics include: * Academics and Education * Aging, Geriatrics and Caregiving * Alcohol and Drug Dependency * Allergies and Asthma * Ashley River Tower * Bones, Joints, Muscles and Spine * Cancer * Children''s Health * Cosmetic Surgery * Dental * Dermatology/Skin Problems * Diabetes, Endocrinology and Metabolism * Digestive Health * ENT: Ear, Nose and Throat * Executive Health * Eye Health * General Health and Wellness * Heart and Vascular Health * Hospice * Kohl''s Take a Minute for Kids * Lungs and Breathing * Men''s Health * Mental Health * MUSC News and Events * Neurological Health * Organ Transplant * Osteoporosis * Pregnancy - Week by Week * Pregnancy and Childbirth * Radiology * Research and Clinical Trials * SC Health, Leadership and Policy * Sports Medicine * Stroke * Urology * Weight Loss Surgery Follow-up * Weight Management * Women''s Health
Proper citation: MUSC Health Podcast Library (RRID:SCR_008827) Copy
The VPH NoE is a project which aims to help support and progress European research in biomedical modeling and simulation of the human body. This project will improve our ability to predict, diagnose and treat disease, and have a dramatic impact on the future of healthcare, the pharmaceutical and medical device industries. The VPH Network of Excellence (VPH NoE) is designed to foster, harmonize and integrate pan-European research in the field of i) patient-specific computer models for personalised and predictive healthcare and ii) ICT-based tools for modeling and simulation of human physiology and disease-related processes. The main objectives of the VPH Network of Excellence are to support the: :- Coordination of research portfolios of VPH NoE partners through initiation of Exemplar integrative research projects that encourage inter-institution and interdisciplinary VPH research; :- Integration of research infrastructures of VPH NoE partners through development of the VPH ToolKit: a shared and mutually accessible source of research equipment, managerial and research infrastructures, facilities and services; :- Development of a portfolio of interdisciplinary training activities including a formal consultation on, and assessment of, VPH careers; :- Establishment of a core set of VPH-related dissemination and networking activities which will engage everyone from partners within the VPH NoE/other VPH projects, to national policy makers, to the public at large; :- Creation of Industrial, Clinical and Scientific Advisory Boards that will jointly guide the direction of the VPH NoE and, through consultation, explore the practical and legal options for real and durable integration within the VPH research community; :- Implementation of key working groups that will pursue specific issues relating to VPH, notably integrating VPH research worldwide through international physiome initiatives. Finally, by involving clinical and industrial stakeholders, VPH NoE also plans to lay a reliable ground to support sustainable interactions and collaboration between research and healthcare communities. Virtual Physiological Human lists, as its main target outcome, patient-specific computer models for personalized and predictive healthcare and ICT-based tools for modeling and simulation of human physiology and disease-related processes. Collaborative projects (IPs and STREPs) within the call will meet specific objectives, addressing: patient-specific computational modeling and simulation of organs or systems data integration and new knowledge extraction and clinical applications and demonstration of tangible benefits of patient-specific computational models. The networking action outlined within the call - the VPH NoE - should serve to connect these efforts, and lay the foundations for the methodological and technical framework to support such research. It should also build on previous EC investment in this field, including the outcomes of VPH type' projects funded within the EU Sixth Framework Programme, and through other National and International initiatives. The Virtual Physiological Human Network of Excellence (VPH NoE) has been designed with "service to the community" of VPH researchers as its primary purpose. Its aims range from the development of a VPH ToolKit and associated infrastructural resources, through integration of models and data across the various relevant levels of physiological structure and functional organization, to VPH community building and support. The VPH NoE aims to foster the development of new and sustainable educational, training and career structures for those involved in VPH related science, technology and medicine. The VPH NoE constitutes a leading group of universities, institutes and organizations who will, by integrating their experience and ongoing activities in VPH research, promote the creation of an environment that actively supports and nurtures interdisciplinary research, education, training and strategic development. The VPH NoE will lead the coordination of diverse activities within the VPH Initiative to help deliver: new environments for predictive, patient-specific, evidence-based, more effective and safer healthcare; improved semantic interoperability of biomedical information and contribution to a common health information infrastructure; facile, on-demand access to distributed European computational infrastructure to support clinical decision making; and increased European multidisciplinary research excellence in biomedical informatics and molecular medicine by fostering closer cooperation between ICT, medical device, medical imaging, pharmaceutical and biotech companies. The VPH NoE will connect the diverse VPH Initiative projects, including not only those funded as part of the VPH initiative but also those of previous EC frameworks and national funding schemes, together with industry, healthcare providers, and international organizations, thereby ensuring that these impacts will be realized. VPH NoE work packages and project structure The VPH NoE activities are divided between five main work packages (follow the links at the top of the page for more information on each). In brief, the focus of each work package is as follows: -Work package 1: Network Management -Work package 2: VPH NoE Exemplar Projects -Work package 3: VPH NoE ToolKit development -Work package 4: VPH NoE Training and Career Development -Work package 5: Spreading Excellence within the VPH NoE and VPH-I In view of its role as the networking action for the VPH Initiative, all VPH NoE activities have been designed to serve and interconnect not only the VPH NoE core members, but also the projects funded within the VPH call (VPH-I) and the wider research community. Key activities which the VPH NoE will pursue, in support of the development of a research environment which facilitates integrative, interdisciplinary and multilevel VPH research, are: -Support for integrative research -Training and dissemination activities -Networking activities Sponsors: VPH NoE is supported by The Directorate-General Research (DG RTD) and The Directorate-General Information Society and Media (DG INFSO).
Proper citation: Virtual Physiological Human Network of Excellence (RRID:SCR_002855) Copy
Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling
Proper citation: Computational Biology Center (RRID:SCR_002877) Copy
Database of scientific photos, illustrations, and videos made available by the National Institute of General Medical Sciences.
Proper citation: National Institute of General Medical Sciences Image Gallery (RRID:SCR_003480) Copy
The Cancer Text Information Extraction System (caTIES) provides tools for de-identification and automated coding of free-text structured pathology reports. It also has a client that can be used to search these coded reports. The client also supports Tissue Banking and Honest Broker operations. caTIES focuses on two important challenges of bioinformatics * Information extraction (IE) from free text * Access to tissue. Regarding the first challenge, information from free-text pathology documents represents a vital and often underutilized source of data for cancer researchers. Typically, extracting useful data from these documents is a slow and laborious manual process requiring significant domain expertise. Application of automated methods for IE provides a method for radically increasing the speed and scope with which this data can be accessed. Regarding the second challenge, there is a pressing need in the cancer research community to gain access to tissue specific to certain experimental criteria. Presently, there are vast quantities of frozen tissue and paraffin embedded tissue throughout the country, due to lack of annotation or lack of access to annotation these tissues are often unavailable to individual researchers. caTIES has three goals designed to solve these problems: * Extract coded information from free text Surgical Pathology Reports (SPRs), using controlled terminologies to populate caBIG-compliant data structures. * Provide researchers with the ability to query, browse and create orders for annotated tissue data and physical material across a network of federated sources. With caTIES the SPR acts as a locator to tissue resources. * Pioneer research for distributed text information extraction within the context of caBIG. caTIES focuses on IE from SPRs because they represent a high-dividend target for automated analysis. There are millions of SPRs in each major hospital system, and SPRs contain important information for researchers. SPRs act as tissue locators by indicating the presence of tissue blocks, frozen tissue and other resources, and by identifying the relationship of the tissue block to significant landmarks such as tumor margins. At present, nearly all important data within SPRs are embedded within loosely-structured free-text. For these reasons, SPRs were chosen to be coded through caTIES because facilitating access to information contained in SPRs will have a powerful impact on cancer research. Once SPR information has been run through the caTIES Pipeline, the data may be queried and inspected by the researcher. The goal of this search may be to extract and analyze data or to acquire slides of tissue for further study. caTIES provides two query interfaces, a simple query dashboard and an advanced diagram query builder. Both of these interfaces are capable of NCI Metathesaurus, concept-based searching as well as string searching. Additionally, the diagram interface is capable of advanced searching functionalities. An important aspect of the interface is the ability to manage queries and case sets. Users are able to vet query results and save them to case sets which can then be edited at a later time. These can be submitted as tissue orders or used to derive data extracts. Queries can also be saved, and modified at a later time. caTIES provides the following web services by default: MMTx Service, TIES Coder Service
Proper citation: caTIES - Cancer Text Information Extraction System (RRID:SCR_003444) Copy
http://www.nimh.nih.gov/research-funding/training/index.shtml
A portal to the National Institute of Mental Health''s Research Training, Career Development, and Related Programs. Topics cover Resources for Applicants, Individual Fellowship Programs, Individual Career Development Programs, Institutional Training Programs, Additional Career Development/Training-Related Opportunities, and Training Programs to Increase Workforce Diversity.
Proper citation: NIMH Resources for Research Training and Career Development (RRID:SCR_005624) Copy
A Parkinson's research foundation dedicated to finding a cure for Parkinson's disease and to ensuring the development of improved therapies. Pipeline Programs fund investigator-initiated proposals focused on the following critical points along the translational pathway to new therapies for Parkinson's disease.
Proper citation: Michael J. Fox Foundation for Parkinsons Research (RRID:SCR_006183) Copy
http://www.medschool.lsuhsc.edu/neuroscience/
Research center that takes multidisciplinary approach to neuroscience education and research. Research programs on molecular and cellular bases of neural diseases are the center of the innovative educational programs. Primary mission is to foster and conduct science that advances understanding of brain function and diseases that affect nervous system.
Proper citation: Louisiana State University School of Medicine Neurosciences Center (RRID:SCR_006446) Copy
http://www.cdc.gov/genomics/default.htm
The Office of Public Health Genomics (OPHG) aims to integrate genomics into public health research, policy, and programs. Doing so could improve interventions designed to prevent and control the country''s leading chronic, infectious, environmental, and occupational diseases. OPHG''s efforts focus on conducting population-based genomic research, assessing the role of family health history in disease risk and prevention, supporting a systematic process for evaluating genetic tests, translating genomics into public health research and programs, and strengthening capacity for public health genomics in disease prevention programs. Goals: To improve public health interventions of diseases of major public health importance, including chronic, infectious, environmental, and occupational diseases, through six major initiatives: * Evaluation of Genomic Applications in Practice and Prevention (EGAPP), * Human Genome Epidemiology Network (HuGENet), * NHANES Collaborative Genomics Project, * Family History Public Health Initiative, * Genomics Translation Research and Programs, and, * Genomic Applications in Practice and Prevention Network (GAPPNet).
Proper citation: Public Health Genomics (RRID:SCR_006462) Copy
http://thompsoncenter.missouri.edu/
The mission of the Thompson Center is to improve the lives of individuals and families affected by autism and neurodevelopmental disorders through world class programs that integrate research, clinical service delivery, education and public policy. The Thompson Center''s vision is to become a recognized national center of excellence that serves as a model of interdisciplinary practice, research and training in the field of autism and neurodevelopmental disorders. At the MU Thompson Center, education and training activities are a key part of our mission. Our goal is to teach others about the needs of persons with autism and other neurodevelopmental disorders and their families. In addition, we strive to help learners acquire skills needed to improve the outcomes of individuals with developmental differences. These skills include evidence-based assessment and intervention strategies, interdisciplinary approaches to service delivery, research methods, and policy development. The Thompson Center offers a range of health, educational and behavioral services in one location for individuals with autism and other developmental concerns. Professionals from different disciplines strive to deliver family-centered care that is comprehensive and coordinated. Autism recently has been recognized as a national public health concern, and federal research funding in this area has increased substantially. Faculty members engage in research that will lead to early identification, treatment and ultimately prevention of autism spectrum disorders (ASD). How findings may eventually translate into improved outcomes in clinical and community settings is a primary goal of our research.
Proper citation: Thompson Center for Autism and Neurodevelopmental Disorders (RRID:SCR_006812) Copy
http://med.stanford.edu/narcolepsy.html
The Stanford Center for Narcolepsy was established in the 1980s as part of the Department of Psychiatry and Behavioral Sciences. Today, it is the world leader in narcolepsy research with more than 100 articles on narcolepsy to its name. The Stanford Center for Narcolepsy was the first to report that narcolepsy-cataplexy is caused by hypocretin (orexin) abnormalities in both animal models and humans. Under the direction of Drs. Emmanuel Mignot and Seiji Nishino, the Stanford Center for Narcolepsy today treats several hundred patients with the disorder each year, many of whom participate in various research protocols. Other research protocols are conducted in animal models of narcolespy. We are always looking for volunteers in our narcolepsy research studies. We are presently recruiting narcoleptic patients for genetic studies, drug clinical trials, hypocretin measurement studies in the CSF and functional MRI studies. Monetary gifts to the Center for Narcolepsy are welcome. If you wish to make the ultimate gift, please consider participating in our Brain Donation Program. To advance our understanding of the cause, course, and treatment of narcolepsy, in 2001 Stanford University started a program to obtain human brain tissue for use in narcolepsy research. Donated brains provide an invaluable resource and we have already used previously donated brains to demonstrate that narcolepsy is caused by a lack of a very specific type of cell in the brain, the hypocretin (orexin) neuron. While the brain donations do not directly help the donor, they provide an invaluable resource and a gift to others. The real answers as to what causes or occurrs in the brain when one has narcolepsy will only be definitively understood through the study of brain tissue. Through these precious donations, narcolepsy may eventually be prevented or reversible. We currently are seeking brains from people with narcolepsy (with cataplexy and without), idiopathic hypersomnia and controls or people without a diagnosed sleep disorder of excessive sleepiness. Control brains are quite important to research, as findings must always be compared to tissue of a non-affected person. Friends and loved ones of people who suffer with narcoleps may wish to donate to our program to help fill this very important need. Refer to the Movies tab for movies of Narcolepsy / Cataplexy.
Proper citation: Stanford Center for Narcolepsy (RRID:SCR_007021) Copy
http://www.port.ac.uk/research/exrc/
Supports researchers using Xenopus models. Researchers are encouraged to deposit Xenopus transgenic and mutant lines, Xenopus in situ hybridization probes, Xenopus specific antibodies and Xenopus expression clones with the Centre. EXRC staff perform quality assurance testing on these reagents and then make them available to researchers at cost. Supplies wild-type Xenopus, embryos, oocytes and Xenopus tropicalis fosmids.
Proper citation: European Xenopus Resource Center (RRID:SCR_007164) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.