Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 284 results
Snippet view Table view Download 284 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002420

http://cobre.mrn.org/megsim/

Realistic simulated MEG datasets ranging from basic sensory to oscillatory sets that mimic functional connectivity; as well as basic visual, auditory, and somatosensory empirical sets. The simulated sets were created for the purpose of testing analysis algorithms across the different MEG systems when the truth is known. MEG baseline recordings were obtained from 5 healthy participants, using three MEG systems: VSM/CTF Omega, Elekta Neuromag Vectorview, 4-D Magnes 3600. Simulated signals were embedded within the CTF and Neuromag 306 baseline recordings (4-D to be added). Participant MRIs are available. Averaged simulation files are available as netcdf files. Neuromag 306 averaged simulations are also available in fif format. Also available: single trials of data where the simulated signal is jittered about a mean value, continuous fif files where the simulated signal is marked by a trigger, and simulations with oscillations added to mimic functional connectivity.

Proper citation: MEGSIM (RRID:SCR_002420) Copy   


  • RRID:SCR_004830

    This resource has 50+ mentions.

http://humanconnectome.org/connectome/connectomeDB.html

Data management platform that houses all data generated by the Human Connectome Project - image data, clinical evaluations, behavioral data and more. ConnectomeDB stores raw image data, as well as results of analysis and processing pipelines. Using the ConnectomeDB infrastructure, research centers will be also able to manage Connectome-like projects, including data upload and entry, quality control, processing pipelines, and data distribution. ConnectomeDB is designed to be a data-mining tool, that allows users to generate and test hypotheses based on groups of subjects. Using the ConnectomeDB interface, users can easily search, browse and filter large amounts of subject data, and download necessary files for many kinds of analysis. ConnectomeDB is designed to work seamlessly with Connectome Workbench, an interactive, multidimensional visualization platform designed specifically for handling connectivity data. De-identified data within ConnectomeDB is publicly accessible. Access to additional data may be available to qualified research investigators. ConnectomeDB is being hosted on a BlueArc storage platform housed at Washington University through the year 2020. This data platform is based on XNAT, an open-source image informatics software toolkit developed by the NRG at Washington University. ConnectomeDB itself is fully open source.

Proper citation: ConnectomeDB (RRID:SCR_004830) Copy   


  • RRID:SCR_006708

    This resource has 1+ mentions.

http://www.armystarrs.org/

Study of mental health risk and resilience factors ever conducted among military personnel. The purpose of Army STARRS is to identify as quickly as possible factors that protect or pose risks to Soldiers'' emotional well-being and overall mental health so that the Army may apply the knowledge to its ongoing health promotion, risk reduction, and suicide prevention efforts. Army STARRS investigators will use four separate study components the Historical Data Study, New Soldier Study, All Army Study, and Soldier Health Outcomes Study to identify factors that help protect a Soldier''s mental health and factors that put a Soldier''s mental health at risk. Army STARRS is a five-year study that will run through 2014. Findings will be reported as they become available, so that the Army may apply them to its ongoing health promotion, risk reduction, and suicide prevention efforts. Given its length and scope, Army STARRS will generate a vast amount of information and will allow investigators to focus on periods in a military career that are known to be high risk for psychological problems. The information gathered from volunteer participants throughout the study will help researchers identify not only potentially relevant risk factors, but potential protective factors as well. Because promoting mental health and reducing suicide risk are important for all Americans, the findings from Army STARRS will benefit not only servicemembers but the nation as a whole. NIMH has assembled a group of renowned experts to carry out this research including teams from the Uniformed Services University of the Health Sciences (USUHS), the University of California, San Diego, University of Michigan, Harvard Medical School, and NIMH. Additional Army and NIMH program staff will contribute to the oversight and implementation of the study. This research team brings together international leaders in military health, health and behavior surveys, epidemiology, suicide, and genetic and neurobiological factors involved in psychological health.

Proper citation: Army STARRS (RRID:SCR_006708) Copy   


http://www.agre.org/index.cfm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. A private repository of clinical and genetic information on families with autism. Genetic and clinical data are obtained from families that have more than one family member diagnosed with an Autism Spectrum Disorder. The biological samples, along with the accompanying clinical data, are made available to AGRE-approved researchers worldwide. As they become available, additional family pedigrees will be posted in the online catalog. Cell lines have been established for the majority of families in this collection and serum/plasma is available on a subset of the subjects until stocks are depleted. The diagnosis of autism has been made using the standard Autism Diagnostic Interview-Revised (ADI-R) algorithm and the Autism Diagnostic Observation Scale (ADOS-G). Detailed birth and medical histories (including basic dysmorphology assessments) on children as well as family and medical information for parents and unaffected siblings, are available for nearly all families. DNA, cell lines, serum, plasma and clinical information are made available to AGRE-approved researchers for analysis.

Proper citation: Autism Genetic Resource Exchange (RRID:SCR_004403) Copy   


https://clinicaltrials.gov/ct2/show/NCT00014001

The NIMH-funded Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Study was a nationwide public health-focused clinical trial that compared the effectiveness of older (first available in the 1950s) and newer (available since the 1990s) antipsychotic medications used to treat schizophrenia. These newer medications, known as atypical antipsychotics, cost roughly 10 times as much as the older medications. CATIE is the largest, longest, and most comprehensive independent trial ever done to examine existing therapies for this disease. Schizophrenia is a brain disorder characterized by hallucinations, delusions, and disordered thinking. The course of schizophrenia is variable, but usually is recurrent and chronic, often causing severe disability. Previous studies have shown that taking antipsychotic medications consistently is far more effective than taking no medicine and that the drugs are necessary to manage the disease. The aim of the CATIE study was to determine which medications provide the best treatment for schizophrenia. Additional information may be found by following the links, http://www.nimh.nih.gov/trials/practical/catie/index.shtml, http://www.clinicaltrials.gov/ct/show/NCT00014001?order=1

Proper citation: CATIE - Clinical Antipsychotic Trials in Intervention Effectiveness (RRID:SCR_005615) Copy   


  • RRID:SCR_014285

http://dx.doi.org/10.5281/zenodo.21157

A graphical source code file used for an automated motion detection and reward system for animal training (see comment for full paper title). It was designed on the LabVIEW programming system. Running the program requires the appropriate LabVIEW runtime software from National Instruments Corporation.

Proper citation: Monkey Motion (RRID:SCR_014285) Copy   


http://senselab.med.yale.edu/odormapdb

OdorMapDB is designed to be a database to support the experimental analysis of the molecular and functional organization of the olfactory bulb and its basis for the perception of smell. It is primarily concerned with archiving, searching and analyzing maps of the olfactory bulb generated by different methods. The first aim is to facilitate comparison of activity patterns elicited by odor stimulation in the glomerular layer obtained by different methods in different species. It is further aimed at facilitating comparison of these maps with molecular maps of the projections of olfactory receptor neuron subsets to different glomeruli, especially for gene targeted animals and for antibody staining. The main maps archived here are based on original studies using 2-deoxyglucose and on current studies using high resolution fMRI in mouse and rat. Links are also provided to sites containing maps by other laboratories. OdorMapDB thus serves as a nodal point in a multilaboratory effort to construct consensus maps integrating data from different methodological approaches. OdorMapDB is integrated with two other databases in SenseLab: ORDB, a database of olfactory receptor genes and proteins, and OdorDB, a database of odor molecules that serve as ligands for the olfactory receptor proteins. The combined use of the three integrated databases allows the user to identify odor ligands that activate olfactory receptors that project to specific glomeruli that are involved in generating the odor activity maps.

Proper citation: Olfactory Bulb Odor Map DataBase (OdorMapDB) (RRID:SCR_007287) Copy   


http://kimlab.io/brain-map/atlas/

Website to visualize and share anatomical labels. Franklin and Paxinos (FP) based anatomical labels in Allen Common Coordinate Framework (CCF). Cell type specific transgenic mice and MRI atlas were used to adjust and further segment labels. New segmentations were created in dorsal striatum using cortico-striatal connectivity data. Anatomical labels were digitized based on Allen ontology, and web-interface was created for easy visualization. These labels provide resource to isolate and identify mouse brain anatomical structures. Open source data sharing will facilitate further refinement of anatomical labels and integration of data interpretation within single anatomical platform.

Proper citation: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_019267) Copy   


  • RRID:SCR_023602

    This resource has 1+ mentions.

https://github.com/DeNardoLab/BehaviorDEPOT

Software tool for automated behavioral detection based on markerless pose tracking. Behavioral analysis tool to first compile and clean point-tracking output from DeepLabCut, and then classify behavioral epochs using custom behavior classifiers. Used to detect frame by frame behavior from video time series and can analyze results of common experimental assays, including fear conditioning, decision-making in T-maze, open field, elevated plus maze, and novel object exploration. Calculates kinematic and postural statistics from keypoint tracking data from pose estimation software outputs.

Proper citation: BehaviorDEPOT (RRID:SCR_023602) Copy   


  • RRID:SCR_017464

    This resource has 1+ mentions.

http://autopatcher.org/

Software tool for neuronal recording in intact brain.

Proper citation: Autopatcher (RRID:SCR_017464) Copy   


  • RRID:SCR_017453

https://github.com/vlchaplin/pyRayleighCuda

Python Rayleigh-Sommerfeld integral for acoustics with optional CUDA graphics processing unit (GPU) implementation.

Proper citation: pyRayleighCuda (RRID:SCR_017453) Copy   


https://yeatmanlab.github.io/pyAFQ/

Software package focused on automated delineation of major fiber tracts in individual human brains, and quantification of tissue properties within the tracts.Software for automated processing and analysis of diffusion MRI data. Automates tractometry.

Proper citation: Automated Fiber Quantification in Python (RRID:SCR_023366) Copy   


  • RRID:SCR_002438

    This resource has 100+ mentions.

http://mindboggle.info

Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350

Proper citation: Mindboggle (RRID:SCR_002438) Copy   


  • RRID:SCR_003086

    This resource has 1000+ mentions.

http://neuromab.ucdavis.edu/

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

Proper citation: NeuroMab (RRID:SCR_003086) Copy   


  • RRID:SCR_007276

    This resource has 10+ mentions.

http://senselab.med.yale.edu

The SenseLab Project is a long-term effort to build integrated, multidisciplinary models of neurons and neural systems. It was founded in 1993 as part of the original Human Brain Project, which began the development of neuroinformatics tools in support of neuroscience research. It is now part of the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF). The SenseLab project involves novel informatics approaches to constructing databases and database tools for collecting and analyzing neuroscience information, using the olfactory system as a model, with extension to other brain systems. SenseLab contains seven related databases that support experimental and theoretical research on the membrane properties: CellPropDB, NeuronDB, ModelDB, ORDB, OdorDB, OdorMapDB, BrainPharmA pilot Web portal that successfully integrates multidisciplinary neurocience data.

Proper citation: SenseLab (RRID:SCR_007276) Copy   


  • RRID:SCR_006682

    This resource has 10+ mentions.

http://nimhstemcells.org/

Induced Pluripotent Stem Cell (iPSC) and Source Cells available for distribution for postnatal-to-adult human control and patient-derived cells and their reprogrammed derivatives in support of stem cell research relevant to mental disorders. This includes but is not limited to anxiety disorders, attention deficit hyperactivity disorder, autism spectrum disorders, bipolar disorder, borderline personality disorder, depression, eating disorders, obsessive-compulsive disorder, panic disorder, post-traumatic stress disorder, and schizophrenia. The capabilities of the repository range from derivation and banking of primary source cells from postnatal through adult human subject tissue to more comprehensive banking and validation of induced pluripotent stem cells (iPSCs) or similar reprogrammed / de-differentiated cells. Please send a message with the Contact page if you wish to contribute source cells or iPSC.

Proper citation: NIMH Stem Cell Center (RRID:SCR_006682) Copy   


http://nimh-repository.rti.org/

A program that synthesizes, purifies, and distributes otherwise unavailable essential compounds to stimulate basic and clinical research in psychopharmacology relevant to mental health in areas such as the molecular pharmacology and signaling of CNS receptors, longitudinal studies to evaluate the molecular, biochemical, and behavioral actions of psychoactive compounds, and functional brain imaging in both primates and humans. WHAT IS AVAILABLE: * Ligands for CNS receptors, radiolabeled compounds for autoradiography and neuroimaging, biochemical markers, drug analogs and metabolites, and reference standards * Synthesis (including GMP) of promising compounds for mental health research, including preclinical toxicology and safety studies, especially compounds for PET neuroimaging * A listing of currently available NIMH CSDSP compounds is available online at www.nimh-repository.rti.org. RTI International scientists can provide investigators with technical assistance and additional information about the compounds on request. Data sheets containing purity, storage, and handling information are supplied with all NIMH CSDSP compounds. WHO IS ELIGIBLE: Investigators involved in basic or clinical research relevant to mental health are eligible to submit requests. To learn more about current NIMH research areas, please visit the NIMH website at www.nimh.nih.gov. NIMH CSDSP compounds are free to qualified academic investigators, but payment may be required from nonacademic requestors. Investigators interested in obtaining radiolabeled compounds but uncertain about what type of label or specific activity would work best for them may obtain help by communicating with the technical contacts listed on the website.

Proper citation: NIMH Chemical Synthesis and Drug Supply Program (RRID:SCR_004921) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_014185

    This resource has 1+ mentions.

http://www.nitrc.org/projects/caworks

A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.

Proper citation: CAWorks (RRID:SCR_014185) Copy   


  • RRID:SCR_014937

    This resource has 10+ mentions.

http://becs.aalto.fi/en/research/bayes/drifter/

Model based Bayesian method for eliminating physiological noise from fMRI data. This algorithm uses image voxel analysis to isolate the cardiac and respiratory noise from the relevant data.

Proper citation: DRIFTER (RRID:SCR_014937) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X