Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.ncbi.nlm.nih.gov/CCDS/
Database (anonymous FTP) resulting from a collaborative effort to identify a core set of human and mouse protein coding regions that are consistently annotated and of high quality. The long term goal is to support convergence towards a standard set of gene annotations. Collaborators are EBI, NCBI, UCSC, WTSI and the initial results are also available from the participants'''' genome browser Web sites. In addition, CCDS identifiers are indicated on the relevant NCBI RefSeq and Entrez Gene records and in Map Viewer displays of RNA (RefSeq) and Gene annotations on the reference assembly.
Proper citation: Consensus CDS (RRID:SCR_006729) Copy
http://bioinformatics.biol.uoa.gr/cuticleDB
A relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the five sequenced genomes where manual annotation has been applied to cuticular proteins: Anopheles gambiae, Apis mellifera, Bombyx mori, Drosophila melanogaster, and Nasonia vitripennis. Some sequences were confirmed as authentic cuticular proteins because protein sequencing revealed that they were present in cuticle; others were identified by sequence homology and other criteria. Entries provides information about whether sequences are putative or authentic cuticular proteins. CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.
Proper citation: CuticleDB (RRID:SCR_007045) Copy
Database about gene regulation and gene expression in prokaryotes. It includes a manually curated and unique collection of transcription factor binding sites. A variety of bioinformatics tools for the prediction, analysis and visualization of regulons and gene reglulatory networks is included. The integrated approach provides information about molecular networks in prokaryotes with focus on pathogenic organisms. In detail this concerns: * transcriptional regulation (transcription factors and their DNA binding sites * signal transduction (two-component systems, phosphylation cascades) * protein interactions (complex formation, oligomerization) * biochemical pathways (chemical reactions) * other regulation events (e.g. codon usage, etc. ...) It aims to be a resource to model protein-host interactions and to be a suitable platform to analyze high-throughput data from proteomis and transcriptomics experiments (systems biology). Currently it mainly contains detailed information about operon and promoter structures including huge collections of transcription factor binding sites. If an appropriate number of regulatory binding sites is available, a position weight matrix (PWM) and a sequence logo is provided, which can be used to predict new binding sites. This data is collected manually by screening the original scientific literature. PRODORIC also handles protein-protein interactions and signal-transduction cascades that commonly occur in form of two-component systems in prokaryotes. Furthermore it contains metabolic network data imported from the KEGG database., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRODORIC (RRID:SCR_007074) Copy
http://www.ncbi.nlm.nih.gov/COG
A database for phylogenetic classification for proteins encoded in complete genomes. Clusters of Orthologous Groups of proteins (COGs) were delineated by comparing protein sequences encoded in complete genomes, representing major phylogenetic lineages. Each COG consists of individual proteins or groups of paralogs from at least 3 lineages and thus corresponds to an ancient conserved domain. Please be aware that COGs hasn't been updated in many years and will not be.
Proper citation: COG (RRID:SCR_007139) Copy
Genome wide map of putative transcription factor binding sites in Arabidopsis thaliana genome.Data in AthaMap is based on published transcription factor (TF) binding specificities available as alignment matrices or experimentally determined single binding sites.Integrated transcriptional and post transcriptional data.Provides web tools for analysis and identification of co-regulated genes. Provides web tools for database assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.
Proper citation: AthaMap (RRID:SCR_006717) Copy
A database and interactive web site for manipulating and displaying annotations on genomes. Features include: detailed views of the genome; use of a variety of premade or personally made glyphs ; customizable order and appearance of tracks by administrators and end-users; search by annotation ID, name, or comment; support of third party annotation using GFF formats; DNA and GFF dumps; connectivity to different databases, including BioSQL and Chado; and a customizable plug-in architecture (e.g. run BLAST, find oligonucleotides, design primers, etc.). GBrowse is distributed as source code for Macintosh OS X, UNIX and Linux platforms, and as pre-packaged binaries for Windows machines. It can be installed using the standard Perl module build procedure, or automated using a network-based install script. In order to use the net installer, you will need to have Perl 5.8.6 or higher and the Apache web server installed. The wiki portion accepts data submissions.
Proper citation: GBrowse (RRID:SCR_006829) Copy
http://bond.unleashedinformatics.com/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.BOND, which requires registration of a free account, is a resource used to perform cross-database searches of available sequence, interaction, complex and pathway information. BOND integrates a range of component databases including GenBank and BIND, the Biomolecular Interaction Network Database. BOND contains 70+ million biological sequences, 33,000 structures, 38,000 GO terms, and over 200,000 human curated interactions contained in BIND, and is open access. BOND serves the interests of the developing global interactome effort encompassing the genomic, proteomic and metabolomic research communities. BOND is the first open access search resource to integrate sequence and interaction information. BOND integrates BLAST functionality, and contains a well-documented API. BOND also stores annotation links for sequences, including links to Genome Ontology descriptions, MedLine abstracts, taxon identifiers, associated structures, redundant sequences, sequence neighbors, conserved domains, data base cross-references, Online Mendalian Inheritance in Man identifiers, LocusLink identifiers and complete genomes. BIND on BOND The Biomolecular Interaction Network Database (BIND), a component database of BOND, is a collection of records documenting molecular interactions. The contents of BIND include high-throughput data submissions and hand-curated information gathered from the scientific literature. BIND is an interaction database with three classifications for molecular associations: molecules that associate with each other to form interactions, molecular complexes that are formed from one or more interaction(s) and pathways that are defined by a specific sequence of two or more interactions.Interactions A BIND record represents an interaction between two or more objects that is believed to occur in a living organism. A biological object can be a protein, DNA, RNA, ligand, molecular complex, gene, photon or an unclassified biological entity. BIND records are created for interactions which have been shown experimentally and published in at least one peer-reviewed journal. A record also references any papers with experimental evidence that support or dispute the associated interaction. Interactions are the basic units of BIND and can be linked together to form molecular complexes or pathways. The BIND interaction viewer is a tool to visualize and analyze molecular interactions, complexes and pathways. The BIND interaction viewer uses Ontoglyphs to display information about a protein via attributes such as molecular function, biological process and sub-cellular localization. Ontoglyphs allow to graphically and interactively explore interaction networks, by visualizing interactions in the context of 34 functional, 25 binding specificity and 24 sub-cellular localization Ontoglyphs categories. We will continue to provide an open access version of BOND, providing its subscribers with free, unlimited access to a core content set. But we are confident you will soon want to upgrade to BONDplus.
Proper citation: Biomolecular Object Network Databank (RRID:SCR_007433) Copy
http://mips.gsf.de/genre/proj/ustilago/
The MIPS Ustilago maydis Genome Database aims to present information on the molecular structure and functional network of the entirely sequenced, filamentous fungus Ustilago maydis. The underlying sequence is the initial release of the high quality draft sequence of the Broad Institute. The goal of the MIPS database is to provide a comprehensive genome database in the Genome Research Environment in parallel with other fungal genomes to enable in depth fungal comparative analysis. The specific aims are to: 1. Generate and assemble Whole Genome Shotgun sequence reads yielding 10X coverage of the U. maydis genome 2. Integrate the genomic sequence assembly with physical maps generated by Bayer CropScience 3. Perform automated annotation of the sequence assembly 4. Align the strain 521 assembly with the FB1 assembly provided by Exelixis 5. Release the sequence assembly and results of our annotation and analysis to public Ustilago maydis is a basidiomycete fungal pathogen of maize and teosinte. The genome size is approximately 20 Mb. The fungus induces tumors on host plants and forms masses of diploid teliospores. These spores germinate and form haploid meiotic products that can be propagated in culture as yeast-like cells. Haploid strains of opposite mating type fuse and form a filamentous, dikaryotic cell type that invades plant tissue to reinitiate infection. Ustilago maydis is an important model system for studying pathogen-host interactions and has been studied for more than 100 years by plant pathologists. Molecular genetic research with U. maydis focuses on recombination, the role of mating in pathogenesis, and signaling pathways that influence virulence. Recently, the fungus has emerged as an excellent experimental model for the molecular genetic analysis of phytopathogenesis, particularly in the characterization of infection-specific morphogenesis in response to signals from host plants. Ustilago maydis also serves as an important model for other basidiomycete plant pathogens that are more difficult to work with in the laboratory, such as the rust and bunt fungi. Genomic sequence of U. maydis will also be valuable for comparative analysis of other fungal genomes, especially with respect to understanding the host range of fungal phytopathogens. The analysis of U. maydis would provide a framework for studying the hundreds of other Ustilago species that attack important crops, such as barley, wheat, sorghum, and sugarcane. Comparisons would also be possible with other basidiomycete fungi, such as the important human pathogen C. neoformans. Commercially, U. maydis is an excellent model for the discovery of antifungal drugs. In addition, maize tumors caused by U. maydis are prized in Hispanic cuisine and there is interest in improving commercial production. The complete putative gene set of the Broad Institute''s second release is loaded into the database and in addition all deviating putative genes from a putative gene set produced by MIPS with different gene prediction parameters are also loaded. The complete dataset will then be analysed, gene predictions will be manually corrected due to combined information derived from different gene prediction algorithms and, more important, protein and EST comparisons. Gene prediction will be restricted to ORFs larger than 50 codons; smaller ORFs will be included only if similarities to other proteins or EST matches confirm their existence or if a coding region was postulated by all prediction programs used. The resulting proteins will be annotated. They will be classified according to the MIPS classification catalogue receiving appropriate descriptions. All proteins with a known, characterized homolog will be automatically assigned to functional categories using the MIPS functional catalog. All extracted proteins are in addition automatically analysed and annotated by the PEDANT suite.
Proper citation: MIPS Ustilago maydis Database (RRID:SCR_007563) Copy
http://genolist.pasteur.fr/Colibri/
Database dedicated to the analysis of the genome of Escherichia coli. Its purpose is to collate and integrate various aspects of the genomic information from E. coli, the paradigm of Gram-negative bacteria. Colibri provides a complete dataset of DNA and protein sequences derived from the paradigm strain E. coli K-12, linked to the relevant annotations and functional assignments. It allows one to easily browse through these data and retrieve information, using various criteria (gene names, location, keywords, etc.). The data contained in Colibri originates from two major sources of information, the reference genomic DNA sequence from the E. coli Genome Project and the feature annotations from the EcoGene data collection., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Colibri (RRID:SCR_007606) Copy
Collection of male germ cell transcriptiome information derived from Serial Analysis of Gene Expression (SAGE). It includes the three key germ cell stages in spermatogenesis, including mouse type A spermatogonia (Spga), pachytene spermatocytes (Spcy), and round spermatids (Sptd). A total of 452,095 SAGE tags are represented in all the libraries and is by far the most comprehensive resource available. Users can choose a global view of germ cell transcriptome data in the UCSC Genome browser. They can also search genes or specify searching criteria based on tag sequence, chromosomal location or tag counts.
Proper citation: GermSAGE (RRID:SCR_007689) Copy
Database of compiled, public, deep sequencing miRNA data and several novel tools to facilitate exploration of massive data. The miR-seq browser supports users to examine short read alignment with the secondary structure and read count information available in concurrent windows. Features such as sequence editing, sorting, ordering, import and export of user data are of great utility for studying iso-miRs, miRNA editing and modifications. miRNA����??target relation is essential for understanding miRNA function. Coexpression analysis of miRNA and target mRNAs, based on miRNA-seq and RNA-seq data from the same sample, is visualized in the heat-map and network views where users can investigate the inverse correlation of gene expression and target relations, compiled from various databases of predicted and validated targets.
Proper citation: miRGator (RRID:SCR_007793) Copy
http://projects.tcag.ca/humandup/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. It contains information about segmental duplications in the human genome. The criteria used to identify regions of segmental duplication are: Sequence identity of at least 90, Sequence length of at least 5 kb, Not be entirely composed of repetitive elements. Background Previous studies have suggested that recent segmental duplications, which are often involved in chromosome rearrangements underlying genomic disease, account for some 5 of the human genome. We have developed rapid computational heuristics based on BLAST analysis to detect segmental duplications, as well as regions containing potential sequence misassignments in the human genome assemblies. Results Our analysis of the June 2002 public human genome assembly revealed that 107.4 of 3,043.1 megabases (Mb) (3.53) of sequence contained segmental duplications, each with size equal or more than 5 kb and 90 identity. We have also detected that 38.9 Mb (1.28) of sequence within this assembly is likely to be involved in sequence misassignment errors. Furthermore, we have identified a significant subset (199,965 of 2,327,473 or 8.6) of single-nucleotide polymorphisms (SNPs) in the public databases that are not true SNPs but are potential paralogous sequence variants. Conclusion Using two distinct computational approaches, we have identified most of the sequences in the human genome that have undergone recent segmental duplications. Near-identical segmental duplications present a major challenge to the completion of the human genome sequence. Potential sequence misassignments detected in this study would require additional efforts to resolve. The segmental duplication data and summary statistics are available for download. Data for Human Genome (based on the May 2004 Human Genome Assembly (hg17)) Visualize duplication relationships in GBrowse (GBrowse) Duplicon Pair relationships (GFF) Genes within duplication regions (HTML) Genome duplication content (MS Excel) The segmental duplication data can be visualized in a genome browser in the GBrowse section. Selected human genome annotation tracks (except the segmental duplication track) have also been obtained from UCSC and loaded into the genome browser. Detailed information (e.g. overlapping genes, overlapping clones, detailed alignment) can be obtained by clicking on a duplication cluster in GBrowse. Both keyword search and BLAT search are available. Analyses based on previous human genome assemblies can be found in the Previous Analyses section. Acknowledgments We thank The Centre for Applied Genomics at the Hospital for Sick Children (HSC) as well as collaborators worldwide. Supported by Genome Canada the Howard Hughes Medical Institute International Scholar Program (to S.W.S.) and the HSC Foundation.
Proper citation: Human Genome Segmental Duplication Database (RRID:SCR_007728) Copy
SYSTERS is a database of protein sequences grouped into homologous families and superfamilies. The SYSTERS project aims to provide a meaningful partitioning of the whole protein sequence space by a fully automatic procedure. A refined two-step algorithm assigns each protein to a family and a superfamily. The sequence data underlying SYSTERS release 4 now comprise several protein sequence databases derived from completely sequenced genomes (ENSEMBL, TAIR, SGD and GeneDB), in addition to the comprehensive Swiss-Prot/TrEMBL databases. To augment the automatically derived results, information from external databases like Pfam and Gene Ontology are added to the web server. Furthermore, users can retrieve pre-processed analyses of families like multiple alignments and phylogenetic trees. New query options comprise a batch retrieval tool for functional inference about families based on automatic keyword extraction from sequence annotations. A new access point, PhyloMatrix, allows the retrieval of phylogenetic profiles of SYSTERS families across organisms with completely sequenced genomes. Gene, Human, Vertebrate, Genome, Human ORFs
Proper citation: SYSTERS (RRID:SCR_007955) Copy
http://supfam.org/SUPERFAMILY/
SUPERFAMILY is a database of structural and functional protein annotations for all completely sequenced organisms. The SUPERFAMILY annotation is based on a collection of hidden Markov models, which represent structural protein domains at the SCOP superfamily level. A superfamily groups together domains which have an evolutionary relationship. The annotation is produced by scanning protein sequences from over 1,700 completely sequenced genomes against the hidden Markov models.
Proper citation: SUPERFAMILY (RRID:SCR_007952) Copy
It provides a database based on a pre-computed similarity matrix covering the similarity space formed by >4 million amino acid sequences from public databases and completely sequenced genomes. The database is capable of handling very large datasets and is updated incrementally. For sequence similarity searches and pairwise alignments, we implemented a grid-enabled software system, which is based on FASTA heuristics and the Smith Waterman algorithm. SimpleSIMAP and AdvancedSIMAP retrieve homologs for given protein sequences that need to be contained in the SIMAP database. While SimpleSIMAP provides only selected parameters and preconfigured search spaces, the AdvancedSIMAP allows the user to specify search space, filtering and sorting parameters in a flexible manner. Both types of queries result in lists of homologs that are linked in turn to their homologs. So the web interfaces allow users to explore quickly and interactively the protein world by homology. Sponsors: SIMAP is supported by the Department of Genome Oriented Bioinformatics of the Technische Universitt Mnchen and the Institute for Bioinformatics of the GSF-National Research Center for Environment and Health.
Proper citation: SIMAP (RRID:SCR_007927) Copy
http://projects.tcag.ca/xenodup/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. It contains information about segmental duplications in the genomes of chimpanzee, mouse, and rat. The criteria used to identify regions of segmental duplication are: * Sequence identity of at least 90% * Sequence length of at least 5 kb * Not be entirely composed of repetitive elements. BACKGROUND: The high quality of the mouse genome draft sequence and its associated annotations are an invaluable biological resource. Identifying recent duplications in the mouse genome, especially in regions containing genes, may highlight important events in recent murine evolution. In addition, detecting recent sequence duplications can reveal potentially problematic regions of the genome assembly. We use BLAST-based computational heuristics to identify large (>/= 5 kb) and recent (>/= 90% sequence identity) segmental duplications in the mouse genome sequence. Here we present a database of recently duplicated regions of the mouse genome found in the mouse genome sequencing consortium (MGSC) February 2002 and February 2003 assemblies. RESULTS: We determined that 33.6 Mb of 2,695 Mb (1.2%) of sequence from the February 2003 mouse genome sequence assembly is involved in recent segmental duplications, which is less than that observed in the human genome (around 3.5-5%). From this dataset, 8.9 Mb (26%) of the duplication content consisted of "unmapped" chromosome sequence. Moreover, we suspect that an additional 18.5 Mb of sequence is involved in duplication artifacts arising from sequence misassignment errors in this genome assembly. By searching for genes that are located within these regions, we identified 675 genes that mapped to duplicated regions of the mouse genome. Sixteen of these genes appear to have been duplicated independently in the human genome. From our dataset we further characterized a 42 kb recent segmental duplication of Mater, a maternal-effect gene essential for embryogenesis in mice. CONCLUSION: Our results provide an initial analysis of the recently duplicated sequence and gene content of the mouse genome. Many of these duplicated loci, as well as regions identified to be involved in potential sequence misassignment errors, will require further mapping and sequencing to achieve accuracy. A Genome Browser database was set up to display the identified duplication content presented in this work. This data will also be relevant to the growing number of investigators who use the draft genome sequence for experimental design and analysis. The segmental duplication data and summary statistics are available for download and can also be visualized in a genome browser in the GBrowse section. Selected annotation tracks (except the segmental duplication track) have also been obtained from UCSC and loaded into the genome browser. Detailed information (e.g. overlapping genes, overlapping clones, detailed alignment) can be obtained by clicking on a duplication cluster in GBrowse. Both keyword search and BLAT search are available. Analyses based on previous genome assemblies can be found in the Previous Analyses section. Recent Developments The Non-Human Genome Segmental Duplication Database is continually updated including the archived copies of the analysis of all previous genome assemblies and will include all new species as they become available. Acknowledgments We thank The Centre for Applied Genomics at the Hospital for Sick Children (HSC) as well as collaborators worldwide. Supported by Genome Canada the Howard Hughes Medical Institute International Scholar Program (to S.W.S.) and the HSC Foundation.
Proper citation: Non-Human Genome Segmental Duplication Database (RRID:SCR_000470) Copy
Database and integrated tools to improve annotation of the bovine genome and to integrate the genome sequence with other genomics data.
Proper citation: Bovine Genome Database (RRID:SCR_000148) Copy
Database and browser that provides a central resource to archive and display association between genetic variation and high-throughput molecular-level phenotypes. This effort originated with the NIH GTEx roadmap project: however the scope of this resource will be extended to include any available genotype/molecular phenotype datasets.
Proper citation: GTEx eQTL Browser (RRID:SCR_001618) Copy
https://fungi.ensembl.org/Neurospora_crassa/Info/Index
It's strategy involves Whole Genome Shotgun (WGS) sequencing, in which sequence from the entire genome is generated and reassembled. This method is standard for microbial genome sequencing, and has been successfully applied to Drosophila. Neurospora is an ideal candidate for this approach because of the low repeat content of the genome. Neurospora crassa Database has expanded the scope of its database by including a mitochondrial annotation, incorporating information from the Neurospora compendium, and assigning NCU numbers to tRNA and rRNAs. They have improved the annotation process to predict untranslated regions and to reduce the number of spurious predictions. As a result, version 3 contains 9,826 genes, 794 fewer than version 2. During the initial phase of a WGS project they sequence both ends of the 4 kb inserts from a plasmid library prepared using randomly sheared and sized-selected DNA. The shotgun reads are assembled by recognizing overlapping regions of sequence and making use of the knowledge of the orientation and distance of the paired reads from each plasmid. Obtaining deep sequence coverage though high levels of sequence redundancy assures that the majority of the genome is represented in the initial assembly and that the consensus sequence is of high quality. Their approach toward the initial assembly was conservative, meaning they would rather fail to join sequence contigs that might overlap each other than risk making false joins between two closely related but non-overlapping genomic regions. Hence, the initial assembly contains many sequence contigs and over time these contigs will increase in size and decrease in number as they are joined together. After shotgun sequencing and assembly there was a second phase of sequencing in which additional sequence was obtained from specific regions that were missing from the original assembly or are recognized to be of low quality in the consensus. The Neurospora crassa sequencing project reflects a close collaboration between the Broad Institute and the Neurospora research community. Principal investigators include Bruce Birren and Chad Nusbaum from the Broad Institute, Matt Sachs at the Oregon Graduate Institute of Science and Technology, Chuck Staben at the University of Kentucky and Jak Kinsey at the Fungal Genetics Stock Center at the University of Kansas Medical Center. In addition, we have a larger Advisory Board made up of a number of Neurospora researchers. Sponsors: They have been funded by the National Science Foundation to sequence the N. crassa genome and make the information publicly available.
Proper citation: Neurospora crassa Database (RRID:SCR_001372) Copy
Hi. I''m genegeek (aka Catherine Anderson). I realized during my PostDoc that I preferred learning and explaining new results to doing science so I started a non-traditional career of teaching and outreach. I''ll be using this space to explore public perception of genetics and other cool molecular biology stuff. I hope to add to the great discussions re: new science discoveries and general understanding of genetics. I''ve been running an outreach program and enjoy talking to non-experts about their opinions and understanding. I hope my enthusiasm for the topics can come through the screen. My posts are presented as opinion and commentary and do not represent the views of LabSpaces Productions, LLC, my employer, or my educational institution.
Proper citation: Daring Nucleic Adventures - genegeek (RRID:SCR_005215) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.