Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
GOTaxExplorer presents a new approach to comparative genomics that integrates functional information and families with the taxonomic classification. It integrates UniProt, Gene Ontology, NCBI Taxonomy, Pfam and SMART in one database. GOTaxExplorer provides four different query types: selection of entity sets, comparison of sets of Pfam families, semantic comparison of sets of GO terms, functional comparison of sets of gene products. This permits to select custom sets of GO terms, families or taxonomic groups. For example, it is possible to compare arbitrarily selected organisms or groups of organisms from the taxonomic tree on the basis of the functionality of their genes. Furthermore, it enables to determine the distribution of specific molecular functions or protein families in the taxonomy. The comparison of sets of GO terms allows to assess the semantic similarity of two different GO terms. The functional comparison of gene products makes it possible to identify functionally equivalent and functionally related gene products from two organisms on the basis of GO annotations and a semantic similarity measure for GO. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GOTaxExplorer (RRID:SCR_005720) Copy
http://vortex.cs.wayne.edu/projects.htm#Onto-Miner
Onto-Miner (OM) provides a single and convenient interface that allows the user to interrogate our databases regarding annotations of known genes. OM will return all known information about a given list of genes. Advantages of OM include the fact it allows queries with multiple genes and allows for scripting. This is unlike GenBank which uses a single gene navigation process. Scripted search of the Onto-Tools database for gene annotations. User account required. Platform: Online tool
Proper citation: Onto-Miner (RRID:SCR_005722) Copy
http://mcbc.usm.edu/gofetcher/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: Quick Search, Advanced Search, and Upload Files for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating gene ontology information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values, and the Extensible Markup Language (XML) format. Platform: Online tool
Proper citation: GOfetcher (RRID:SCR_005681) Copy
http://llama.mshri.on.ca/gofish/GoFishWelcome.html
Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GoFish (RRID:SCR_005682) Copy
The Hepatitis C Virus Database (HCVdb) is a cooperative project of several groups with the mission of providing to the scientific community studying the hepatitis C virus a comprehensive battery of informational and analytical tools. The Viral Bioinformatics Resource Center (VBRC), the Immune Epitope Database and Analysis Resource (IEDB), the Broad Institute Microbial Sequencing Center (MSC), and the Los Alamos HCV Sequence Database (HCV-LANL) are combining forces to acquire and annotate data on Hepatitis C virus, and to develop and utilize new tools to facilitate the study of this group of organisms.
Proper citation: Hepatitis C Virus Database (HCVdb) (RRID:SCR_005718) Copy
http://rgd.mcw.edu/tools/ontology/ont_search.cgi
Ontology that defines hierarchical display of different rat strains as derived from parental strains. Ontology Browser allows to retrieve all genes, QTLs, strains and homologs annotated to particular term. Covers all types of biological pathways including altered and disease pathways, and to capture relationships between them within hierarchical structure. Five nodes of ontology include classic metabolic, regulatory, signaling, drug and disease pathways. Ontology allows for standardized annotation of rat. Serves as vehicle to connect between genes and ontology reports, between reports and interactive pathway diagrams, between pathways that directly connect to one another within diagram or between pathways that in some fashion are globally related in pathway suites and suite networks.
Proper citation: Rat Strain Ontology (RRID:SCR_003449) Copy
http://bejerano.stanford.edu/phenotree/
Web server to search for genes involved in given phenotypic difference between mammalian species. The mouse-referenced multiple alignment data files used to perform the forward genomics screen is also available. The webserver implements one strategy of a Forward Genomics approach aiming at matching phenotype to genotype. Forward genomics matches a given pattern of phenotypic differences between species to genomic differences using a genome-wide screen. In the implementation, the divergence of the coding region of genes in mammals is measured. Given an ancestral phenotypic trait that is lost in independent mammalian lineages, it is shown that searching for genes that are more diverged in all trait-loss species can discover genes that are involved in the given phenotype.
Proper citation: Phenotree (RRID:SCR_003591) Copy
Consortium that brings together Europe's top industrial and academic experts to develop new tests that will help researchers detect potential liver toxicity issues much earlier in drug development, saving many patients from the trauma of liver failure. The team aims to deepen the understanding of the science behind drug-induced liver injury, and use that knowledge to overcome the many drawbacks of the tests currently used. A major focus will be on a systematic and evidence-based evaluation of both currently available and new laboratory test systems, including cultures of liver cells in one-dimensional and three dimensional configurations. The project will also develop models that take into account the natural differences between patients. This is important because factors such as certain genes, the liver's immune response, and viral infections have all been associated with an increased risk of DILI. The project will seek to address the current lack of human liver cells available to researchers by using induced pluripotent stem cells (iPSCs) generated from patients who are particularly sensitive to DILI. Another strand of the project will develop computer models to unravel the complex, often inter-related mechanisms behind DILI. Finally, the team will assess how accurate the results of laboratory tests are at predicting actual outcomes in patients.
Proper citation: MIP-DILI (RRID:SCR_003870) Copy
http://www.newmeds-europe.com/
Consortium that will develop new models and methods to enable novel treatments for schizophrenia and depression including three important missing tools that will facilitate the translation of scientific findings into benefits for patients. The project will focus on developing new animal models which use brain recording and behavioral tests to identify innovative and effective drugs for schizophrenia. The project will develop standardized paradigms, acquisition and analysis techniques to apply brain imaging, especially fMRI and PET imaging to drug development. It will examine how new genetic findings (duplication and deletion or changes in genes) influence the response to various drugs and whether this information can be used to choose the right drug for the right patient. And finally, it will try and develop new approaches for shorter and more efficient trials of new medication - trials that may require fewer patients and give faster results.
Proper citation: NEWMEDS (RRID:SCR_003872) Copy
http://www.agedbrainsysbio.eu/
Consortium focused on identifying the foundational pathways responsible for the aging of the brain, with a focus on Late Onset Alzheimer's disease. They aim to identify the interactions through which the aging phenotype develops in normal and in disease conditions; modeling novel pathways and their evolutionary properties to design experiments that identify druggable targets. As early steps of neurodegenerative disorders are expected to impact synapse function the project will focus in particular on pre- or postsynaptic protein networks. The concept is to identify subsets of pathways with two unique druggable hallmarks, the validation of interactions occurring locally in subregions of neurons and a human and/or primate accelerated evolutionary signature. The consortium will do this through six approaches: * identification of interacting protein networks from recent Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) data, * experimental validation of interconnected networks working in subregion of a neuron (such as dendrites and dendritic spines), * inclusion of these experimentally validated networks in larger networks obtained from available databases to extend possible protein interactions, * identification of human and/or primate positive selection either in coding or in regulatory gene sequences, * manipulation of these human and/or primate accelerated evolutionary interacting proteins in human neurons derived from induced Pluripotent Stem Cells (iPSCs) * modeling predictions in drosophila and novel mouse transgenic models * validation of new druggable targets and markers as a proof-of-concept towards the prevention and cure of aging cognitive defects. The scientists will share results and know-how on Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) gene discovery, comparative functional genomics in mouse and drosophila models, in mouse transgenic approaches, research on human induced pluripotent stem cells (hiPSC) and their differentiation in vitro and modeling pathways with emphasis on comparative and evolutionary aspects. The four European small to medium size enterprises (SMEs) involved will bring their complementary expertise and will ensure translation of project results to clinical application.
Proper citation: AgedBrainSYSBIO (RRID:SCR_003825) Copy
A consortium of leading biobanks and international researchers from all domains of biobanking science to ensure the development of harmonized measures and standardized computing infrastructures enabling the effective pooling of data and key measures of life-style, social circumstances and environment, as well as critical sub-components of the phenotypes associated with common complex diseases. The overall aim is to build upon tools and methods available to achieve solutions for researchers to use pooled data from different cohort and biobank studies. This, in order to obtain the very large sample sizes needed to investigate current questions in multifactorial diseases, notably on gene-environment interactions. This aim will be achieved through the development of harmonization and standardization tools, implementation of these tools and demonstration of their applicability. BioSHaRE researchers are collaborating with P3G, the Global Alliance for Genomics and Health, IRDiRC (International Rare Diseases Research Consortium), H3Africa and other organizations on the development of an International Code of Conduct for Genomic and Health-Related Data Sharing. A draft version is available for external review. Generic documents have been prepared covering areas of biobanking that are of major importance. SOPs have been finalized for blood withdrawal (SOPWP5001blood withdrawal), manual blood processing (SOPWP5002blood processing), shipping of biosamples (SOPWP5003shipping) and withdrawal, processing and storage of urine samples (SOPWP5004urine).
Proper citation: BioSHaRE (RRID:SCR_003811) Copy
A biotechnology company that has developed technology for synthesizing custom microarrays, the FlexArrayer. Its is a desk-top sized instrument which allows the researcher to generate, in their own laboratory, either a custom oligonucleotide array in a single day or oligonucleotide pool in a few days. Recent developments in synthesis chemistry allows many modifications to be incorporated or for alternative chemistries to be considered., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: FlexGen (RRID:SCR_003902) Copy
http://clinicaltrials.gov/show/NCT01211678
A consortium evaluating a new biomarker screening test that might help identify patients with rheumatoid arthritis (RA) who are unlikely to benefit from anti-tumor necrosis factor-alpha (TNFalpha) medications. BATTER-UP will enroll around 1,000 patients being treated by one of several marketed anti-TNF RA drugs: Enbrel, Remicade, Humira, Simponi, or Cimzia. Through data analyses and predictive response modeling, the consortium aims to better understand which patients with RA will derive the greatest benefit from TNF inhibitors. The investigators in this observational study will attempt to validate an 8-gene biomarker set based on work by Biogen Idec researchers as likely to predict anti-TNF responsiveness in patients with RA. In preliminary results, the 8-gene biomarker set predicted with 89% accuracy individuals who did not reach European League Against Rheumatism (EULAR) Disease Activity Score (DAS)-28 good response after 14 weeks of treatment. The 8 genes included in the screen are CLTB, MXRA7, CXorf52, COL4A3BP, YIPF6, FAM44A, SFRS2, and PGK1. Biological samples and clinical outcome information will be used to confirm and extend the utility of previously published biomarkers that can predict response to anti-TNF agents. These data may also generate new hypotheses for further testing. The BATTER-UP samples and data will be established as a reference set for investigation of personalized medicine in RA. The study will be a resource of DNA and other biological materials that can be investigated for biomarkers in the future as new technologies arise.
Proper citation: Biomarkers of Anti-TNF Treatment Efficacy in Rheumatoid Arthritis - Unresponsive Populations (RRID:SCR_004019) Copy
http://amp.pharm.mssm.edu/Enrichr/
A web-based gene list enrichment analysis tool that provides various types of visualization summaries of collective functions of gene lists. It includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes / proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries.
Proper citation: Enrichr (RRID:SCR_001575) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. This laboratory facilities contain core research space for monoclonal antibody production, oligonucleotide and peptide synthesis, gene cloning, DNA sequencing, high performance liquid chromatography, tissue culture, positron emission tomography, magnetic resonance spectroscopy and electron microscopy.
Proper citation: The Biomedical Research Foundation - Current Research (RRID:SCR_001564) Copy
https://repository.niddk.nih.gov/study/21
Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.
Proper citation: Type 1 Diabetes Genetics Consortium (RRID:SCR_001557) Copy
http://neuronalarchitects.com/ibiofind.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.
Proper citation: iBIOFind (RRID:SCR_001587) Copy
Website for analyzing microarray data. Software toolbox for storing, analyzing and integrating microarray data and related genotype and phenotype data. The site is particularly suited for combining QTL and microarray data to search for candidate genes contributing to complex traits. In addition, the site allows, if desired by the investigators, sharing of the data. Investigators can conduct in-silico microarray experiments using their own and/or shared data. There are five major sections of the site: Genome/Transcriptome Data Browser, Microarray Analysis Tools, Gene List Analysis Tools, QTL Tools, and Downloads. The genome/transcriptome data browser combines a genome browser with all the microarray, RNA-Seq, and Genomic Sequencing data. This provides an effective platform to view all of this data side by side. Source code is available on GitHub.
Proper citation: PhenoGen Informatics (RRID:SCR_001613) Copy
http://www.norcomm.org/index.htm
Large-scale research initiative focused on developing and distributing a library of mouse embryonic stem (ES) cell lines carrying single gene trapped or targeted mutations across the mouse genome. NorCOMM's large and growing archive of ES cells is publicly available on a cost-recovery basis from the Canadian Mouse Mutant Repository. As an international public resource, access to clones is unrestricted and nonexclusive. Through NorCOMM's affiliation with the Canadian Mouse Consortium (CMC), NorCOMM also provides clients with a single point of access to regional mouse derivation, phenotyping, genetic and archiving services across Canada. These value-added services can help your company harness NorCOMM's resources for drug discovery, target discovery and preclinical validation.
Proper citation: North American Conditional Mouse Mutagenesis Project (RRID:SCR_001614) Copy
Resource for any researcher looking to obtain knockout mice and embryonic stem (ES) cells quickly and with favorable intellectual property (IP) terms. Our resources include the world’s largest gene trap library of ES cells in the C57BL/6N mouse strain and a constantly expanding repository of cryopreserved germplasm of knockout lines. TIGM provides both ES cell clones and mice as well as other transgenic core services including CRISPR/Cas9-based genome modifications within the Texas A&M system and to the public and private international research community.
Proper citation: Texas A and M Institute for Genomic Medicine (RRID:SCR_001615) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.