Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A viewer for medical research images that provides analysis tools and a user interface to navigate image volumes. There are three versions of Mango, each geared for a different platform: * Mango ? Desktop ? Mac OS X, Windows, and Linux * webMango ? Browser ? Safari, Firefox, Chrome, and Internet Explorer * iMango ? Mobile ? Apple iPad Key Features: * Built-in support for DICOM, NIFTI, Analyze, and NEMA-DES formats * Customizable: Create plugins, custom filters, color tables, file formats, and atlases * ROI Editing: Threshold and component-based tools for painting and tracing ROIs * Surface Rendering: Interactive surface models supporting cut planes and overlays * Image Registration: Semi-automatic image coregistration and manual transform editing * Image Stacking: Threshold and transparency-based image overlay stacking * Analysis: Histogram, cross-section, time-series analysis, image and ROI statistics * Processing: Kernel and rank filtering, arithmetic/logic image and ROI calculators
Proper citation: Mango (RRID:SCR_009603) Copy
http://www.blueprintnhpatlas.org/
Atlas of gene expression in the developing rhesus macaque brain. This atlas is a free online resource with a unique set of data and tools aimed to create a developmental neuroanatomical framework for exploring the cellular and molecular architecture of the developing postnatal primate brain with direct relevance for human brain development. The atlas includes: * Microarray ** Microdissection: Fine structure transcriptional profiling across postnatal development for fine nuclear subdivisions of the prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum ** Macrodissection: Gross structure transcriptional profiling across postnatal development for the same structures * ISH: ** Cellular resolution in situ hybridization image data of five major brain regions during postnatal developmental periods for genes clinically important for a variety of human neurodevelopmental disorders, including prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum. ** Serial analysis of selected genes across the entire adult brain, focusing on cellular marker genes, genes with cortical area specificity and gene families important to neural function. * ISH Anatomic Search: Detailed gene expression search on the ISH data based on expert annotation * Reference Data: Developmental stage-specific reference series, consisting of magnetic resonance imaging (MRI) and Nissl histology to provide a neuroanatomical context for the gene expression data. These data and tools are designed to provide a valuable public resource for researchers and educators to explore neurodevelopment in non-human primates, and a key evolutionary link between other Web-based gene expression atlases for adult and developing mouse and human brain.
Proper citation: NIH Blueprint NHP Atlas (RRID:SCR_010559) Copy
http://brainandsociety.org/the-brain-observatory
Formerly a topical portal studying the brain which collected and imaged 1000 human brains, the Brain Observatory has partnered with the Institute for Brain and Society to build virtual laboratories that will feed directly into the database of images and knowledge created in the context of the Human Brain Library. The Brain Observatory will also host exhibits, conferences, and events aimed at promoting a heightened awareness of brain research and how its results can benefit personal brain fitness and mental health.
Proper citation: Brain Observatory (RRID:SCR_010641) Copy
http://www.nitrc.org/projects/vmagnotta/
A Diffusion Tensor fiber tracking software suite that includes streamline tracking tools. The fiber tracking includes a guided tracking tool that integrates apriori information into a streamlines algorithm. This suite of programs is built using the NA-MIC toolkit and uses the Slicer3 execution model framework to define the command line arguments. These tools can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3. NOTE: All new development is being managed in a github repository. Please visit, https://github.com/BRAINSia/BRAINSTools
Proper citation: GTRACT (RRID:SCR_009651) Copy
http://krasnow1.gmu.edu/CENlab/software.html
Stochastic reaction-diffusion simulator in Java which is used for simulating neuronal signaling pathways.
Proper citation: NeuroRD (RRID:SCR_014769) Copy
Web platform for downstream analysis and visualization of proteomics data. Server that facilitates integrated annotation, analysis and visualization of quantitative proteomics data, with emphasis on PTM networks and integration with LINCS library of chemical and genetic perturbation signatures in order to provide further mechanistic and functional insights. Primary input for server consists of set of peptides or proteins, optionally with PTM sites, and their corresponding abundance values.
Proper citation: piNET (RRID:SCR_018693) Copy
https://github.com/aplbrain/saber
Library of containerized tools and workflow deployment system for enabling processing of large neuroimaging datasets. Provides canonical neuroimaging workflows specified in standard workflow language (CWL), integration with workflow execution engine (Airflow), imaging database (bossDB), and parameter database (Datajoint) to deploy workflows at scale, and tools to automate deployment and optimization of neuroimaging pipelines.
Proper citation: Scalable Analytics for Brain Exploration Research (RRID:SCR_018812) Copy
https://openwetware.org/wiki/RAVE
Open source software tool for reproducible analysis and visualization of intracranial EEG data. Used for analysis of intracranial electroencephalogram data, including data collected using strips and grids (electrocorticography, ECoG) and depth electrodes (stereotactic EEG).
Proper citation: RAVE (RRID:SCR_019040) Copy
https://github.com/r3fang/SnapATAC
Software package for analyzing scATAC-seq datasets.Used to dissects cellular heterogeneity in unbiased manner and map trajectories of cellular states. Can process data from up to million cells. Incorporates existing tools into comprehensive package for analyzing single cell ATAC-seq dataset.
Proper citation: SnapATAC (RRID:SCR_020981) Copy
The SenseLab Project is a long-term effort to build integrated, multidisciplinary models of neurons and neural systems. It was founded in 1993 as part of the original Human Brain Project, which began the development of neuroinformatics tools in support of neuroscience research. It is now part of the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF). The SenseLab project involves novel informatics approaches to constructing databases and database tools for collecting and analyzing neuroscience information, using the olfactory system as a model, with extension to other brain systems. SenseLab contains seven related databases that support experimental and theoretical research on the membrane properties: CellPropDB, NeuronDB, ModelDB, ORDB, OdorDB, OdorMapDB, BrainPharmA pilot Web portal that successfully integrates multidisciplinary neurocience data.
Proper citation: SenseLab (RRID:SCR_007276) Copy
https://www.nitrc.org/projects/neurolabels
This resource was created to host descriptions of protocols, definitions and rules for the reliable identification and localization of human brain anatomy and discussions of best practices in brain labeling. Project for manual anatomical labeling of human brain MRI data, and the visual presentation of labeled brain images.
Proper citation: BrainColor: Collaborative Open Labeling Online Resource (RRID:SCR_006377) Copy
Induced Pluripotent Stem Cell (iPSC) and Source Cells available for distribution for postnatal-to-adult human control and patient-derived cells and their reprogrammed derivatives in support of stem cell research relevant to mental disorders. This includes but is not limited to anxiety disorders, attention deficit hyperactivity disorder, autism spectrum disorders, bipolar disorder, borderline personality disorder, depression, eating disorders, obsessive-compulsive disorder, panic disorder, post-traumatic stress disorder, and schizophrenia. The capabilities of the repository range from derivation and banking of primary source cells from postnatal through adult human subject tissue to more comprehensive banking and validation of induced pluripotent stem cells (iPSCs) or similar reprogrammed / de-differentiated cells. Please send a message with the Contact page if you wish to contribute source cells or iPSC.
Proper citation: NIMH Stem Cell Center (RRID:SCR_006682) Copy
http://becs.aalto.fi/en/research/bayes/drifter/
Model based Bayesian method for eliminating physiological noise from fMRI data. This algorithm uses image voxel analysis to isolate the cardiac and respiratory noise from the relevant data.
Proper citation: DRIFTER (RRID:SCR_014937) Copy
http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula
Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.
Proper citation: TRACULA (RRID:SCR_013152) Copy
http://www.nitrc.org/projects/caworks
A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.
Proper citation: CAWorks (RRID:SCR_014185) Copy
https://github.com/kstreet13/slingshot
Software R package for identifying and characterizing continuous developmental trajectories in single cell data. Cell lineage and pseudotime inference for single-cell transcriptomics.
Proper citation: Slingshot (RRID:SCR_017012) Copy
Web based tool to visualize gene expression and metadata annotation distribution throughout single cell dataset or multiple datasets. Interactive viewer for single cell expression. You can click on and hover over cells to get meta information, search for genes to color on and click clusters to show cluster specific marker genes.
Proper citation: UCSC Cell Browser (RRID:SCR_023293) Copy
https://portal.brain-map.org/atlases-and-data/bkp/mapmycells
MapMyCells maps single cell and spatial transcriptomics data sets to massive, high-quality, and high-resolution cell type taxonomies. It enables speeding up the creation of brain reference atlases by facilitating the integration of datasets from the scientific community with a shared reference. MapMyCells is part of the growing Brain Knowledge Platform. Its key advantage is scale: researchers can provide up to 327 million cell-gene pairs from their own data, a huge leap forward for working with whole-brain datasets. Allen Institute and its collaborators continue to add new reference taxonomies and algorithms to MapMyCells.
Proper citation: MapMyCells (RRID:SCR_024672) Copy
Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350
Proper citation: Mindboggle (RRID:SCR_002438) Copy
A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.
Proper citation: NeuroMab (RRID:SCR_003086) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within nidm-terms that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.