Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 284 results
Snippet view Table view Download 284 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_007276

    This resource has 10+ mentions.

http://senselab.med.yale.edu

The SenseLab Project is a long-term effort to build integrated, multidisciplinary models of neurons and neural systems. It was founded in 1993 as part of the original Human Brain Project, which began the development of neuroinformatics tools in support of neuroscience research. It is now part of the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF). The SenseLab project involves novel informatics approaches to constructing databases and database tools for collecting and analyzing neuroscience information, using the olfactory system as a model, with extension to other brain systems. SenseLab contains seven related databases that support experimental and theoretical research on the membrane properties: CellPropDB, NeuronDB, ModelDB, ORDB, OdorDB, OdorMapDB, BrainPharmA pilot Web portal that successfully integrates multidisciplinary neurocience data.

Proper citation: SenseLab (RRID:SCR_007276) Copy   


  • RRID:SCR_006682

    This resource has 10+ mentions.

http://nimhstemcells.org/

Induced Pluripotent Stem Cell (iPSC) and Source Cells available for distribution for postnatal-to-adult human control and patient-derived cells and their reprogrammed derivatives in support of stem cell research relevant to mental disorders. This includes but is not limited to anxiety disorders, attention deficit hyperactivity disorder, autism spectrum disorders, bipolar disorder, borderline personality disorder, depression, eating disorders, obsessive-compulsive disorder, panic disorder, post-traumatic stress disorder, and schizophrenia. The capabilities of the repository range from derivation and banking of primary source cells from postnatal through adult human subject tissue to more comprehensive banking and validation of induced pluripotent stem cells (iPSCs) or similar reprogrammed / de-differentiated cells. Please send a message with the Contact page if you wish to contribute source cells or iPSC.

Proper citation: NIMH Stem Cell Center (RRID:SCR_006682) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_014185

    This resource has 1+ mentions.

http://www.nitrc.org/projects/caworks

A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.

Proper citation: CAWorks (RRID:SCR_014185) Copy   


  • RRID:SCR_014937

    This resource has 10+ mentions.

http://becs.aalto.fi/en/research/bayes/drifter/

Model based Bayesian method for eliminating physiological noise from fMRI data. This algorithm uses image voxel analysis to isolate the cardiac and respiratory noise from the relevant data.

Proper citation: DRIFTER (RRID:SCR_014937) Copy   


  • RRID:SCR_017012

    This resource has 50+ mentions.

https://github.com/kstreet13/slingshot

Software R package for identifying and characterizing continuous developmental trajectories in single cell data. Cell lineage and pseudotime inference for single-cell transcriptomics.

Proper citation: Slingshot (RRID:SCR_017012) Copy   


https://community.brain-map.org/t/allen-human-reference-atlas-3d-2020-new/405

Parcellation of adult human brain in 3D, labeling every voxel with brain structure spanning 141 structures. These parcellations were drawn and adapted from prior 2D version of adult human brain atlas.

Proper citation: Allen Human Reference Atlas, 3D, 2020 (RRID:SCR_017764) Copy   


  • RRID:SCR_017962

    This resource has 1+ mentions.

https://openwetware.org/wiki/HughesLab:JTK_Cycle

Software R package for Detecting Rhythmic Components in Genome-Scale Data Sets. Non-parametric algorithm to identify rhythmic components in large datasets. Identifies and characterizes cycling variables in large datasets.

Proper citation: JTK_CYCLE (RRID:SCR_017962) Copy   


  • RRID:SCR_010559

    This resource has 10+ mentions.

http://www.blueprintnhpatlas.org/

Atlas of gene expression in the developing rhesus macaque brain. This atlas is a free online resource with a unique set of data and tools aimed to create a developmental neuroanatomical framework for exploring the cellular and molecular architecture of the developing postnatal primate brain with direct relevance for human brain development. The atlas includes: * Microarray ** Microdissection: Fine structure transcriptional profiling across postnatal development for fine nuclear subdivisions of the prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum ** Macrodissection: Gross structure transcriptional profiling across postnatal development for the same structures * ISH: ** Cellular resolution in situ hybridization image data of five major brain regions during postnatal developmental periods for genes clinically important for a variety of human neurodevelopmental disorders, including prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum. ** Serial analysis of selected genes across the entire adult brain, focusing on cellular marker genes, genes with cortical area specificity and gene families important to neural function. * ISH Anatomic Search: Detailed gene expression search on the ISH data based on expert annotation * Reference Data: Developmental stage-specific reference series, consisting of magnetic resonance imaging (MRI) and Nissl histology to provide a neuroanatomical context for the gene expression data. These data and tools are designed to provide a valuable public resource for researchers and educators to explore neurodevelopment in non-human primates, and a key evolutionary link between other Web-based gene expression atlases for adult and developing mouse and human brain.

Proper citation: NIH Blueprint NHP Atlas (RRID:SCR_010559) Copy   


  • RRID:SCR_010641

http://brainandsociety.org/the-brain-observatory

Formerly a topical portal studying the brain which collected and imaged 1000 human brains, the Brain Observatory has partnered with the Institute for Brain and Society to build virtual laboratories that will feed directly into the database of images and knowledge created in the context of the Human Brain Library. The Brain Observatory will also host exhibits, conferences, and events aimed at promoting a heightened awareness of brain research and how its results can benefit personal brain fitness and mental health.

Proper citation: Brain Observatory (RRID:SCR_010641) Copy   


  • RRID:SCR_013141

    This resource has 10+ mentions.

http://nipy.org

Community site to make brain imaging research easier that aims to build software that is clearly written, clearly explained, a good fit for the underlying ideas, and a natural home for collaboration.

Proper citation: Neuroimaging in Python (RRID:SCR_013141) Copy   


https://www.delaneycare.org/index.php

The Collaboratory of AIDS Researchers for Eradication (CARE) is a consortium of scientific experts in the field of HIV latency from several U.S. and European academic research institutions as well as Merck Research Laboratories working together to find a cure for HIV.

Proper citation: Collaboratory of AIDS Researchers for Eradciation (CARE) (RRID:SCR_013681) Copy   


  • RRID:SCR_015820

    This resource has 100+ mentions.

https://biccn.org

Consortium for the cell census in the brain. Integrated network of data generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate brains.

Proper citation: BICCN (RRID:SCR_015820) Copy   


  • RRID:SCR_016152

    This resource has 100+ mentions.

https://nemoarchive.org/

Data repository specifically focused on storage and dissemination of omic data generated from BRAIN Initiative and related brain research projects. Data repository and archive for BCDC and BICCN project, among others. NeMO data include genomic regions associated with brain abnormalities and disease, transcription factor binding sites and other regulatory elements, transcription activity, levels of cytosine modification, histone modification profiles and chromatin accessibility.

Proper citation: NeMOarchive (RRID:SCR_016152) Copy   


http://research.mssm.edu/cnic/

Center to advance research and training in mathematical, computational and modern imaging approaches to understanding the brain and its functions. Software tools and associated reconstruction data produced in the center are available. Researchers study the relationships between neural function and structure at levels ranging from the molecular and cellular, through network organization of the brain. This involves the development of new computational and analytic tools for imaging and visualization of 3-D neural morphology, from the gross topologic characteristics of the dendritic arbor to the fine structure of spines and their synapses. Numerical simulations of neural mechanisms based on these structural data are compared with in-vivo and in-vitro electrophysiological recordings. The group also develops new theoretical and analytic approaches to exploring the function of neural models of working memory. The goal of this analytic work is to combine biophysically realistic models and simulations with reduced mathematical models that capture essential dynamical behaviors while reproducing the functionally important features of experimental data. Research areas include: Imaging Studies, Volume Integration, Visualization Techniques, Medial Axis Extraction, Spine Detection and Classification, Applications of Rayburst, Analysis of Spatially Complex Structures, Computational Modeling, Mathematical and Analytic Studies

Proper citation: Computational Neurobiology and Imaging Center (RRID:SCR_013317) Copy   


http://www.nimh.nih.gov/funding/clinical-trials-for-researchers/practical/step-bd/index.shtml

A long-term outpatient study designed to find out which treatments, or combinations of treatments, are most effective for treating episodes of depression and mania and for preventing recurrent episodes in people with bipolar disorder. This study has been completed. (2005) STEP-BD is evaluating all the best-practice treatment options used for bipolar disorder: mood-stabilizing medications, antidepressants, atypical antipsychotics, and psychosocial interventions - or talk therapies - including Cognitive Behavioral Therapy, Family-focused Therapy, Interpersonal and Social Rhythm Therapy, and Collaborative Care (psychoeducation). There are two kinds of treatment pathways in STEP-BD, and participants may have the opportunity to take part in both. The medications and psychosocial interventions provided in these pathways are considered among the best choices of treatment for bipolar disorder in everyday clinical practice. In the Best Practice Pathway, participants are followed by a STEP-BD certified doctor and all treatment choices are individualized. Everyone enrolled in STEP-BD may participate in this pathway. Participants and their doctors work together to decide on the best treatment plans and to change these plans if needed. Also, anyone who wishes to stay on his or her current treatment upon entering STEP-BD may do so in this pathway. Adolescents and adults age 15 years and older may participate in the Best Practice Pathway. For adults age 18 and older, another way to participate is in the STEP-BD Randomized Care Pathways. Depending on their symptoms, participants may be offered treatment in one or more of these pathways during the course of the study. The participants remain on mood-stabilizing medication. However, because doctors are uncertain which of several treatment strategies work best for bipolar disorder, another medication and/or talk therapy may be added. Each Randomized Care Pathway involves a different set of these additional treatments. Unlike in the Best Practice Pathway, the participants in the Randomized Care Pathways are randomly assigned to treatments. Also, in some cases, neither the participant nor the doctor will be told which of the different medications is being added. This is called a double-blind study and is done so that the medication effects can be evaluated objectively, without any unintended bias that may come from knowing what has been assigned. Participants will not be assigned medications that they have had bad reactions to in the past, that they are strongly opposed to, or that the doctor feels are unsuitable for them. The medication(s) participants may be randomly assigned to in the Randomized Care Pathways are free of charge. There are other treatment options for participants if they do not respond well to the treatment assigned to them. Also, participants may return to the Best Practice Pathway at any time. About 1,500 individuals will be enrolled in at least one Randomized Care Pathway during their period of participation in STEP-BD. It is important to note that STEP-BD provides continuity of care. For example, if a participant starts out in the Best Practice Pathway and later chooses to enter one of the Randomized Care Pathways, he or she continues with the same STEP-BD doctor and treatment team. Then, after completing the Randomized Care Pathway, the participant may return to the Best Practice Pathway for ongoing, individually-tailored treatment. Follow the link to view study info at Clinicaltrials.gov, http://www.clinicaltrials.gov/ct/show/NCT00012558?order=1

Proper citation: Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) (RRID:SCR_008844) Copy   


  • RRID:SCR_017639

    This resource has 10+ mentions.

https://github.com/davidaknowles/leafcutter/

Software tool for identifying and quantifying RNA splicing variation. Used to study sample and population variation in intron splicing. Identifies variable intron splicing events from short read RNA-seq data and finds alternative splicing events of high complexity. Used for detecting differential splicing between sample groups, and for mapping splicing quantitative trait loci (sQTLs).

Proper citation: LeafCutter (RRID:SCR_017639) Copy   


http://interactome.baderlab.org/

Project portal for the Human Reference Protein Interactome Project, which aims generate a first reference map of the human protein-protein interactome network by identifying binary protein-protein interactions (PPIs). It achieves this by systematically interrogating all pairwise combinations of predicted human protein-coding genes using proteome-scale technologies.

Proper citation: Human Reference Protein Interactome Project (RRID:SCR_015670) Copy   


  • RRID:SCR_023293

    This resource has 100+ mentions.

https://cells.ucsc.edu/

Web based tool to visualize gene expression and metadata annotation distribution throughout single cell dataset or multiple datasets. Interactive viewer for single cell expression. You can click on and hover over cells to get meta information, search for genes to color on and click clusters to show cluster specific marker genes.

Proper citation: UCSC Cell Browser (RRID:SCR_023293) Copy   


  • RRID:SCR_024672

    This resource has 10+ mentions.

https://portal.brain-map.org/atlases-and-data/bkp/mapmycells

MapMyCells maps single cell and spatial transcriptomics data sets to massive, high-quality, and high-resolution cell type taxonomies. It enables speeding up the creation of brain reference atlases by facilitating the integration of datasets from the scientific community with a shared reference. MapMyCells is part of the growing Brain Knowledge Platform. Its key advantage is scale: researchers can provide up to 327 million cell-gene pairs from their own data, a huge leap forward for working with whole-brain datasets. Allen Institute and its collaborators continue to add new reference taxonomies and algorithms to MapMyCells.

Proper citation: MapMyCells (RRID:SCR_024672) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDM Terminology Resources

    Welcome to the nidm-terms Resources search. From here you can search through a compilation of resources used by nidm-terms and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that nidm-terms has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on nidm-terms then you can log in from here to get additional features in nidm-terms such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into nidm-terms you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within nidm-terms that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X